File size: 2,510 Bytes
3cfe271 e0e8f37 3cfe271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-7b
model-index:
- name: outputs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
## Model description
GOOGLEGEMMA modelini UZB datasetga fine-tuned qilindi PEFT bilan. natijasi yaxshi deyishish qiyin.
Shuning uchun PEFT siz qilishni tafsiya qilaman .
**Agarda siz PEFT bilan fine-tuned qilingan modellarni ishlatishni bilmasangiz, exmaple codega qarang**
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
model_name = "google/gemma-7b"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True
)
model.config.use_cache = False
##### yuqoridagi code hamma PEFT bilan qilingan modellarni reduced par qilish orqali free GPU Notebooklarda foydalanish imkoni beradi.
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM,AutoTokenizer
config = PeftConfig.from_pretrained("ai-nightcoder/outputs")
tokenizer = AutoTokenizer.from_pretrained('ai-nightcoder/outputs')
inputs = tokenizer("Xorijiy mamlakatlar", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
predicted_token_class_ids = outputs.logits.argmax(-1)
generated_text = tokenizer.batch_decode(predicted_token_class_ids, skip_special_tokens=True)
print(generated_text)
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 |