Andybeyond
commited on
Create notebooks/melody_development.ipynb
Browse filesAdd starting melody_development notebook code.
notebooks/melody_development.ipynb
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
# Melody Generation Model Development
|
3 |
+
# Project: Opentunes.ai
|
4 |
+
|
5 |
+
This notebook implements a Transformer-based melody generation model.
|
6 |
+
The model takes text prompts and generates musical melodies in MIDI format.
|
7 |
+
|
8 |
+
Key Features:
|
9 |
+
- Text-to-melody generation
|
10 |
+
- MIDI file handling
|
11 |
+
- Transformer architecture
|
12 |
+
- Training pipeline integration with HuggingFace
|
13 |
+
|
14 |
+
Note: This is a starting point and might need adjustments based on:
|
15 |
+
- Specific musical requirements
|
16 |
+
- Available training data
|
17 |
+
- Computational resources
|
18 |
+
- Desired output format
|
19 |
+
"""
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
from transformers import (
|
24 |
+
AutoModelForAudio,
|
25 |
+
AutoTokenizer,
|
26 |
+
Trainer,
|
27 |
+
TrainingArguments
|
28 |
+
)
|
29 |
+
import librosa
|
30 |
+
import numpy as np
|
31 |
+
import pandas as pd
|
32 |
+
import music21
|
33 |
+
from pathlib import Path
|
34 |
+
import json
|
35 |
+
import wandb # for experiment tracking
|
36 |
+
|
37 |
+
# =====================================
|
38 |
+
# 1. Data Loading and Preprocessing
|
39 |
+
# =====================================
|
40 |
+
|
41 |
+
class MelodyDataset(torch.utils.data.Dataset):
|
42 |
+
"""
|
43 |
+
Custom Dataset class for handling melody data.
|
44 |
+
|
45 |
+
This class:
|
46 |
+
- Loads MIDI files from a directory
|
47 |
+
- Converts MIDI files to sequences of notes and durations
|
48 |
+
- Provides data in format suitable for model training
|
49 |
+
|
50 |
+
Args:
|
51 |
+
data_dir (str): Directory containing MIDI files
|
52 |
+
max_length (int): Maximum sequence length (default: 512)
|
53 |
+
|
54 |
+
Features:
|
55 |
+
- Handles variable-length MIDI files
|
56 |
+
- Converts complex MIDI structures to simple note sequences
|
57 |
+
- Implements efficient data loading and preprocessing
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(self, data_dir, max_length=512):
|
61 |
+
self.data_dir = Path(data_dir)
|
62 |
+
self.max_length = max_length
|
63 |
+
self.midi_files = list(self.data_dir.glob("*.mid"))
|
64 |
+
|
65 |
+
# Initialize tokenizer for text prompts
|
66 |
+
self.tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
67 |
+
print(f"Found {len(self.midi_files)} MIDI files in {data_dir}")
|
68 |
+
|
69 |
+
def midi_to_sequence(self, midi_path):
|
70 |
+
"""
|
71 |
+
Convert MIDI file to sequence of notes.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
midi_path (Path): Path to MIDI file
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
list: List of dictionaries containing note information
|
78 |
+
Each dict has 'pitch', 'duration', and 'offset'
|
79 |
+
|
80 |
+
Example output:
|
81 |
+
[
|
82 |
+
{'pitch': 60, 'duration': 1.0, 'offset': 0.0}, # Middle C, quarter note
|
83 |
+
{'pitch': 64, 'duration': 0.5, 'offset': 1.0}, # E, eighth note
|
84 |
+
...
|
85 |
+
]
|
86 |
+
"""
|
87 |
+
score = music21.converter.parse(str(midi_path))
|
88 |
+
notes = []
|
89 |
+
|
90 |
+
# Extract notes and their properties
|
91 |
+
for n in score.flat.notesAndRests:
|
92 |
+
if isinstance(n, music21.note.Note):
|
93 |
+
notes.append({
|
94 |
+
'pitch': n.pitch.midi, # MIDI pitch number (0-127)
|
95 |
+
'duration': n.duration.quarterLength, # Duration in quarter notes
|
96 |
+
'offset': n.offset # Start time in quarter notes
|
97 |
+
})
|
98 |
+
return notes
|
99 |
+
|
100 |
+
def __getitem__(self, idx):
|
101 |
+
"""
|
102 |
+
Get a single item from the dataset.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
idx (int): Index of the item
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
dict: Dictionary containing:
|
109 |
+
- 'notes': Tensor of note pitches
|
110 |
+
- 'durations': Tensor of note durations
|
111 |
+
|
112 |
+
Note: Both tensors are padded/truncated to max_length
|
113 |
+
"""
|
114 |
+
midi_file = self.midi_files[idx]
|
115 |
+
melody_sequence = self.midi_to_sequence(midi_file)
|
116 |
+
|
117 |
+
# Convert to tensors with padding/truncation
|
118 |
+
notes = torch.tensor([n['pitch'] for n in melody_sequence])
|
119 |
+
durations = torch.tensor([n['duration'] for n in melody_sequence])
|
120 |
+
|
121 |
+
# Pad or truncate sequences
|
122 |
+
if len(notes) < self.max_length:
|
123 |
+
# Pad with rest values
|
124 |
+
pad_length = self.max_length - len(notes)
|
125 |
+
notes = torch.cat([notes, torch.zeros(pad_length)])
|
126 |
+
durations = torch.cat([durations, torch.zeros(pad_length)])
|
127 |
+
else:
|
128 |
+
# Truncate to max_length
|
129 |
+
notes = notes[:self.max_length]
|
130 |
+
durations = durations[:self.max_length]
|
131 |
+
|
132 |
+
return {
|
133 |
+
'notes': notes,
|
134 |
+
'durations': durations,
|
135 |
+
}
|
136 |
+
|
137 |
+
def __len__(self):
|
138 |
+
return len(self.midi_files)
|