Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,105 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- birder
|
5 |
+
library_name: birder
|
6 |
+
license: apache-2.0
|
7 |
+
---
|
8 |
+
|
9 |
+
# Model Card for regnet_y_8g_intermediate-eu-common
|
10 |
+
|
11 |
+
RegNet Y image classification model. The model follows a two-stage training process: first undergoing intermediate training on a large-scale dataset containing diverse bird species from around the world, then fine-tuned specifically on the `eu-common` dataset containing common European bird species.
|
12 |
+
|
13 |
+
The species list is derived from the Collins bird guide [^1].
|
14 |
+
|
15 |
+
[^1]: Svensson, L., Mullarney, K., & Zetterström, D. (2022). Collins bird guide (3rd ed.). London, England: William Collins.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
- **Model Type:** Image classification and detection backbone
|
20 |
+
- **Model Stats:**
|
21 |
+
- Params (M): 38.8
|
22 |
+
- Input image size: 384 x 384
|
23 |
+
- **Dataset:** eu-common (708 classes)
|
24 |
+
|
25 |
+
- **Papers:**
|
26 |
+
- Designing Network Design Spaces: <https://arxiv.org/abs/2003.13678>
|
27 |
+
|
28 |
+
## Model Usage
|
29 |
+
|
30 |
+
### Image Classification
|
31 |
+
|
32 |
+
```python
|
33 |
+
import birder
|
34 |
+
from birder.inference.classification import infer_image
|
35 |
+
|
36 |
+
(net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("regnet_y_8g_intermediate-eu-common", inference=True)
|
37 |
+
|
38 |
+
# Get the image size the model was trained on
|
39 |
+
size = birder.get_size_from_signature(signature)
|
40 |
+
|
41 |
+
# Create an inference transform
|
42 |
+
transform = birder.classification_transform(size, rgb_stats)
|
43 |
+
|
44 |
+
image = "path/to/image.jpeg" # or a PIL image
|
45 |
+
(out, _) = infer_image(net, image, transform)
|
46 |
+
# out is a NumPy array with shape of (1, num_classes)
|
47 |
+
```
|
48 |
+
|
49 |
+
### Image Embeddings
|
50 |
+
|
51 |
+
```python
|
52 |
+
import birder
|
53 |
+
from birder.inference.classification import infer_image
|
54 |
+
|
55 |
+
(net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("regnet_y_8g_intermediate-eu-common", inference=True)
|
56 |
+
|
57 |
+
# Get the image size the model was trained on
|
58 |
+
size = birder.get_size_from_signature(signature)
|
59 |
+
|
60 |
+
# Create an inference transform
|
61 |
+
transform = birder.classification_transform(size, rgb_stats)
|
62 |
+
|
63 |
+
image = "path/to/image.jpeg" # or a PIL image
|
64 |
+
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
65 |
+
# embedding is a NumPy array with shape of (1, embedding_size)
|
66 |
+
```
|
67 |
+
|
68 |
+
### Detection Feature Map
|
69 |
+
|
70 |
+
```python
|
71 |
+
from PIL import Image
|
72 |
+
import birder
|
73 |
+
|
74 |
+
(net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("regnet_y_8g_intermediate-eu-common", inference=True)
|
75 |
+
|
76 |
+
# Get the image size the model was trained on
|
77 |
+
size = birder.get_size_from_signature(signature)
|
78 |
+
|
79 |
+
# Create an inference transform
|
80 |
+
transform = birder.classification_transform(size, rgb_stats)
|
81 |
+
|
82 |
+
image = Image.open("path/to/image.jpeg")
|
83 |
+
features = net.detection_features(transform(image).unsqueeze(0))
|
84 |
+
# features is a dict (stage name -> torch.Tensor)
|
85 |
+
print([(k, v.size()) for k, v in features.items()])
|
86 |
+
# Output example:
|
87 |
+
# [('stage1', torch.Size([1, 96, 96, 96])),
|
88 |
+
# ('stage2', torch.Size([1, 192, 48, 48])),
|
89 |
+
# ('stage3', torch.Size([1, 384, 24, 24])),
|
90 |
+
# ('stage4', torch.Size([1, 768, 12, 12]))]
|
91 |
+
```
|
92 |
+
|
93 |
+
## Citation
|
94 |
+
|
95 |
+
```bibtex
|
96 |
+
@misc{radosavovic2020designingnetworkdesignspaces,
|
97 |
+
title={Designing Network Design Spaces},
|
98 |
+
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
|
99 |
+
year={2020},
|
100 |
+
eprint={2003.13678},
|
101 |
+
archivePrefix={arXiv},
|
102 |
+
primaryClass={cs.CV},
|
103 |
+
url={https://arxiv.org/abs/2003.13678},
|
104 |
+
}
|
105 |
+
```
|