File size: 2,576 Bytes
c401e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: op_hunter_conservation_gc_function_t5_small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# op_hunter_conservation_gc_function_t5_small

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3915
- Accuracy: 0.8465

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 0
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- num_epochs: 18

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 357  | 0.6829          | 0.5834   |
| 0.6954        | 2.0   | 714  | 0.5832          | 0.7296   |
| 0.6219        | 3.0   | 1071 | 0.5836          | 0.7065   |
| 0.6219        | 4.0   | 1428 | 0.5057          | 0.7515   |
| 0.4778        | 5.0   | 1785 | 0.4011          | 0.8331   |
| 0.4073        | 6.0   | 2142 | 0.3593          | 0.8575   |
| 0.4073        | 7.0   | 2499 | 0.3976          | 0.8441   |
| 0.3739        | 8.0   | 2856 | 0.3873          | 0.8465   |
| 0.3619        | 9.0   | 3213 | 0.4043          | 0.8465   |
| 0.3567        | 10.0  | 3570 | 0.4077          | 0.8417   |
| 0.3567        | 11.0  | 3927 | 0.3988          | 0.8380   |
| 0.3536        | 12.0  | 4284 | 0.3915          | 0.8441   |
| 0.3472        | 13.0  | 4641 | 0.3895          | 0.8441   |
| 0.3472        | 14.0  | 4998 | 0.3892          | 0.8441   |
| 0.3555        | 15.0  | 5355 | 0.3978          | 0.8453   |
| 0.3516        | 16.0  | 5712 | 0.3896          | 0.8477   |
| 0.3414        | 17.0  | 6069 | 0.3935          | 0.8490   |
| 0.3414        | 18.0  | 6426 | 0.3915          | 0.8465   |


### Framework versions

- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0