--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-32B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: original results: [] language: - en datasets: - bespokelabs/Bespoke-Stratos-17k ---

## Model description This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) on the [Bespoke-Stratos-17k dataset](https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k). The dataset is derived by distilling DeepSeek-R1 using the data pipeline of Berkeley NovaSky’s Sky-T1 with some modifications. More info in the dataset card at [Bespoke-Stratos-17k](https://huggingface.co/datasets/Bespoke-Stratos-17k). It outperforms Qwen-2.5-32B-Instruct on reasoning benchmarks: | Metric | Bespoke-Stratos-32B | Sky-T1-32B | O1-preview | DeepSeek-R1 | DeepSeek-R1-Distill-Qwen-32B | |---------|-------------------|-------------|------------|------------|----------------------------| | AIME2024 | 56.7 | 43.3 | 40.0 | 79.8 | 72.6 | | MATH500 | 92.4 | 82.4 | 81.4 | 97.3 | 94.3 | | GPQA-Diamond | 55.6 | 56.8 | 75.2 | 71.5 | 62.1 | | LiveCodeBench Easy | 93.4 | 86.3 | 92.9 | - | - | | LiveCodeBench Medium | 60.7 | 56.8 | 54.9 | - | - | | LiveCodeBench Hard | 24.4 | 17.9 | 16.3 | - | - | | LiveCodeBench All | 63.60 | 57.93 | 59.13 | 65.9 | 57.2 | ## Intended uses & limitations Apache 2.0 License ## Training procedure We used 8xH100 to train the model for 27 hours. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 12 - total_train_batch_size: 96 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3