--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: miner_id_3_65eaec89-ddb3-4b65-866f-c621f95eea55_1730931497 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - databricks-dolly-15k_train_data.json ds_type: json path: /workspace/input_data/databricks-dolly-15k_train_data.json type: field_input: instruction field_instruction: context field_output: response system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 10 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hours_to_complete: 6 hub_model_id: besimray/miner_id_3_65eaec89-ddb3-4b65-866f-c621f95eea55_1730931497 hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 5 mlflow_experiment_name: /tmp/databricks-dolly-15k_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 save_strategy: steps sequence_len: 4096 started_at: '2024-11-06T22:18:17.692838' strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: besimray24-rayon wandb_mode: online wandb_project: Public_TuningSN wandb_run: miner_id_24 wandb_runid: 65eaec89-ddb3-4b65-866f-c621f95eea55 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# miner_id_3_65eaec89-ddb3-4b65-866f-c621f95eea55_1730931497 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8982 | 0.0014 | 1 | 2.0118 | | 1.4115 | 0.0141 | 10 | 1.7198 | | 1.5607 | 0.0282 | 20 | 1.5798 | | 1.5161 | 0.0424 | 30 | 1.5666 | | 1.5162 | 0.0565 | 40 | 1.5537 | | 1.9686 | 0.0706 | 50 | 1.5470 | | 1.707 | 0.0847 | 60 | 1.5475 | | 1.6366 | 0.0988 | 70 | 1.5452 | | 1.1905 | 0.1130 | 80 | 1.5459 | | 1.3792 | 0.1271 | 90 | 1.5382 | | 1.459 | 0.1412 | 100 | 1.5392 | | 1.3699 | 0.1553 | 110 | 1.5354 | | 1.4439 | 0.1694 | 120 | 1.5356 | | 1.6577 | 0.1836 | 130 | 1.5331 | | 1.8126 | 0.1977 | 140 | 1.5347 | | 1.545 | 0.2118 | 150 | 1.5332 | | 1.0026 | 0.2259 | 160 | 1.5331 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1