--- library_name: transformers license: mit base_model: belisards/congretimbau tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: belisards/congretimbau results: [] --- # belisards/congretimbau This model is a fine-tuned version of [belisards/congretimbau](https://huggingface.co/belisards/congretimbau) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2121 - Accuracy: 0.7823 - F1: 0.7252 - Recall: 0.7628 - Precision: 0.7103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 5151 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.2495 | 1.0 | 35 | 0.3182 | 0.7143 | 0.5311 | 0.5380 | 0.5711 | | 0.2596 | 2.0 | 70 | 0.2572 | 0.4911 | 0.4818 | 0.5557 | 0.5448 | | 0.2321 | 3.0 | 105 | 0.2390 | 0.7232 | 0.6754 | 0.7011 | 0.6681 | | 0.1769 | 4.0 | 140 | 0.2265 | 0.7054 | 0.6773 | 0.7339 | 0.6816 | | 0.1614 | 5.0 | 175 | 0.2461 | 0.7054 | 0.6735 | 0.7227 | 0.6745 | | 0.1027 | 6.0 | 210 | 0.2762 | 0.8125 | 0.7764 | 0.8062 | 0.7621 | | 0.0832 | 7.0 | 245 | 0.3463 | 0.8036 | 0.7441 | 0.7441 | 0.7441 | | 0.0354 | 8.0 | 280 | 0.6084 | 0.8214 | 0.7673 | 0.7673 | 0.7673 | | 0.0068 | 9.0 | 315 | 0.6917 | 0.8214 | 0.7673 | 0.7673 | 0.7673 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0