--- library_name: transformers license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: neuralmind/bert-base-portuguese-cased results: [] --- # neuralmind/bert-base-portuguese-cased This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0505 - Accuracy: 0.7211 - F1: 0.6737 - Recall: 0.7341 - Precision: 0.6706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 5151 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 120 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.0685 | 1.0 | 18 | 0.0667 | 0.3571 | 0.3563 | 0.4877 | 0.4864 | | 0.0642 | 2.0 | 36 | 0.0655 | 0.5268 | 0.5020 | 0.5461 | 0.5354 | | 0.0629 | 3.0 | 54 | 0.0641 | 0.6607 | 0.6052 | 0.6253 | 0.6036 | | 0.0614 | 4.0 | 72 | 0.0618 | 0.6964 | 0.6569 | 0.6942 | 0.6551 | | 0.0583 | 5.0 | 90 | 0.0584 | 0.7054 | 0.6773 | 0.7339 | 0.6816 | | 0.0549 | 6.0 | 108 | 0.0548 | 0.7321 | 0.6930 | 0.7295 | 0.6862 | | 0.048 | 7.0 | 126 | 0.0553 | 0.7768 | 0.7124 | 0.7148 | 0.7102 | | 0.0391 | 8.0 | 144 | 0.0521 | 0.7768 | 0.7460 | 0.7933 | 0.7360 | | 0.032 | 9.0 | 162 | 0.0523 | 0.7679 | 0.7208 | 0.7424 | 0.7103 | | 0.0222 | 10.0 | 180 | 0.0585 | 0.7946 | 0.7354 | 0.7381 | 0.7329 | | 0.0181 | 11.0 | 198 | 0.0809 | 0.8036 | 0.7083 | 0.6880 | 0.7561 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0