File size: 4,693 Bytes
decc57b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: CTMAE2_CS_V7_9
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CTMAE2_CS_V7_9

This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0853
- Accuracy: 0.8

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 7750

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.6691        | 0.0201  | 156  | 0.7815          | 0.4667   |
| 0.6103        | 1.0201  | 312  | 0.8786          | 0.4667   |
| 0.5756        | 2.0201  | 468  | 0.9522          | 0.4667   |
| 0.5278        | 3.0201  | 624  | 0.7274          | 0.5556   |
| 0.4309        | 4.0201  | 780  | 0.8362          | 0.6      |
| 0.4808        | 5.0201  | 936  | 0.8308          | 0.5333   |
| 0.373         | 6.0201  | 1092 | 0.6670          | 0.5778   |
| 0.8291        | 7.0201  | 1248 | 0.5672          | 0.7333   |
| 0.5016        | 8.0201  | 1404 | 0.5802          | 0.7111   |
| 0.2954        | 9.0201  | 1560 | 0.8878          | 0.6222   |
| 0.2576        | 10.0201 | 1716 | 0.5753          | 0.7778   |
| 0.4279        | 11.0201 | 1872 | 0.9186          | 0.6889   |
| 0.2818        | 12.0201 | 2028 | 1.3718          | 0.6      |
| 0.4623        | 13.0201 | 2184 | 1.2370          | 0.7111   |
| 0.3438        | 14.0201 | 2340 | 1.6716          | 0.5778   |
| 0.4862        | 15.0201 | 2496 | 0.9000          | 0.7778   |
| 0.2198        | 16.0201 | 2652 | 1.2056          | 0.6667   |
| 0.1955        | 17.0201 | 2808 | 1.0853          | 0.8      |
| 0.2232        | 18.0201 | 2964 | 2.0170          | 0.6444   |
| 0.6413        | 19.0201 | 3120 | 1.3823          | 0.7111   |
| 0.3481        | 20.0201 | 3276 | 0.9786          | 0.7111   |
| 0.1043        | 21.0201 | 3432 | 1.3672          | 0.7778   |
| 0.3651        | 22.0201 | 3588 | 1.5295          | 0.6444   |
| 0.1562        | 23.0201 | 3744 | 1.0870          | 0.7778   |
| 0.137         | 24.0201 | 3900 | 1.9200          | 0.6889   |
| 0.446         | 25.0201 | 4056 | 1.9016          | 0.6667   |
| 0.0023        | 26.0201 | 4212 | 1.6282          | 0.7333   |
| 0.3529        | 27.0201 | 4368 | 1.7609          | 0.6444   |
| 0.384         | 28.0201 | 4524 | 1.6187          | 0.7333   |
| 0.2808        | 29.0201 | 4680 | 2.1017          | 0.6      |
| 0.1582        | 30.0201 | 4836 | 1.7994          | 0.7333   |
| 0.1092        | 31.0201 | 4992 | 1.3328          | 0.7556   |
| 0.2964        | 32.0201 | 5148 | 2.8201          | 0.5778   |
| 0.2952        | 33.0201 | 5304 | 1.4045          | 0.7778   |
| 0.3124        | 34.0201 | 5460 | 1.6641          | 0.7111   |
| 0.0011        | 35.0201 | 5616 | 1.7113          | 0.7111   |
| 0.1375        | 36.0201 | 5772 | 2.0553          | 0.6667   |
| 0.1252        | 37.0201 | 5928 | 2.2712          | 0.6444   |
| 0.1576        | 38.0201 | 6084 | 2.0950          | 0.6889   |
| 0.0008        | 39.0201 | 6240 | 2.9621          | 0.6      |
| 0.0003        | 40.0201 | 6396 | 1.9269          | 0.7333   |
| 0.0002        | 41.0201 | 6552 | 2.2481          | 0.6889   |
| 0.0111        | 42.0201 | 6708 | 2.1604          | 0.6667   |
| 0.3096        | 43.0201 | 6864 | 2.9864          | 0.6      |
| 0.0006        | 44.0201 | 7020 | 2.0592          | 0.7111   |
| 0.0001        | 45.0201 | 7176 | 2.2161          | 0.7111   |
| 0.0002        | 46.0201 | 7332 | 2.2129          | 0.7111   |
| 0.0002        | 47.0201 | 7488 | 2.3814          | 0.6889   |
| 0.0001        | 48.0201 | 7644 | 2.2948          | 0.7111   |
| 0.2534        | 49.0137 | 7750 | 2.3587          | 0.6889   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0