--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: CTMAE2_CS_V7_5 results: [] --- # CTMAE2_CS_V7_5 This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3647 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 9700 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.6793 | 0.0201 | 195 | 0.7616 | 0.4667 | | 0.5591 | 1.0201 | 390 | 0.7040 | 0.4667 | | 0.7211 | 2.0201 | 585 | 0.4916 | 0.8222 | | 0.5544 | 3.0201 | 780 | 0.7590 | 0.5556 | | 0.6032 | 4.0201 | 975 | 0.5508 | 0.6667 | | 0.518 | 5.0201 | 1170 | 0.8928 | 0.4667 | | 0.4857 | 6.0201 | 1365 | 0.5889 | 0.6222 | | 0.3634 | 7.0201 | 1560 | 0.8523 | 0.6444 | | 0.4082 | 8.0201 | 1755 | 0.3647 | 0.8667 | | 0.4897 | 9.0201 | 1950 | 0.5648 | 0.7778 | | 0.389 | 10.0201 | 2145 | 0.5736 | 0.7778 | | 0.3753 | 11.0201 | 2340 | 1.0849 | 0.5778 | | 0.3118 | 12.0201 | 2535 | 1.0598 | 0.6222 | | 0.5823 | 13.0201 | 2730 | 0.7086 | 0.7333 | | 0.2604 | 14.0201 | 2925 | 1.4168 | 0.6222 | | 0.5767 | 15.0201 | 3120 | 0.7966 | 0.8 | | 0.4844 | 16.0201 | 3315 | 1.0488 | 0.7333 | | 0.0729 | 17.0201 | 3510 | 1.0075 | 0.7333 | | 0.4188 | 18.0201 | 3705 | 1.2724 | 0.7111 | | 0.247 | 19.0201 | 3900 | 1.3884 | 0.7556 | | 0.8041 | 20.0201 | 4095 | 1.1552 | 0.7333 | | 0.168 | 21.0201 | 4290 | 1.7924 | 0.6889 | | 0.2564 | 22.0201 | 4485 | 1.5682 | 0.7333 | | 0.2034 | 23.0201 | 4680 | 1.6061 | 0.6889 | | 0.436 | 24.0201 | 4875 | 1.5508 | 0.6889 | | 0.379 | 25.0201 | 5070 | 1.6198 | 0.7111 | | 0.0726 | 26.0201 | 5265 | 2.3293 | 0.6 | | 0.0099 | 27.0201 | 5460 | 1.7658 | 0.7333 | | 0.0346 | 28.0201 | 5655 | 1.5937 | 0.7111 | | 0.0058 | 29.0201 | 5850 | 2.3511 | 0.6444 | | 0.1163 | 30.0201 | 6045 | 1.7068 | 0.7333 | | 0.0962 | 31.0201 | 6240 | 1.8767 | 0.6889 | | 0.2826 | 32.0201 | 6435 | 2.1657 | 0.7111 | | 0.1249 | 33.0201 | 6630 | 1.7385 | 0.7333 | | 0.2191 | 34.0201 | 6825 | 2.1789 | 0.7111 | | 0.0958 | 35.0201 | 7020 | 2.4722 | 0.6444 | | 0.0006 | 36.0201 | 7215 | 1.9177 | 0.7111 | | 0.0036 | 37.0201 | 7410 | 1.9591 | 0.6889 | | 0.0009 | 38.0201 | 7605 | 2.3993 | 0.6222 | | 0.0005 | 39.0201 | 7800 | 1.7378 | 0.7778 | | 0.0014 | 40.0201 | 7995 | 2.4454 | 0.6889 | | 0.1203 | 41.0201 | 8190 | 2.1138 | 0.7333 | | 0.0138 | 42.0201 | 8385 | 2.1769 | 0.7333 | | 0.3569 | 43.0201 | 8580 | 2.6946 | 0.6222 | | 0.0002 | 44.0201 | 8775 | 2.1566 | 0.7111 | | 0.0924 | 45.0201 | 8970 | 2.4636 | 0.6667 | | 0.0004 | 46.0201 | 9165 | 2.1076 | 0.7333 | | 0.0645 | 47.0201 | 9360 | 2.1503 | 0.7111 | | 0.1121 | 48.0201 | 9555 | 2.2611 | 0.7111 | | 0.1268 | 49.0149 | 9700 | 2.1728 | 0.7111 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0