File size: 4,696 Bytes
628f4a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: CTMAE-P2-V2-S2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CTMAE-P2-V2-S2

This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5069
- Accuracy: 0.7333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 6500

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.6135        | 0.0202  | 131  | 0.7942          | 0.5556   |
| 0.4654        | 1.0202  | 262  | 2.2124          | 0.5556   |
| 1.1122        | 2.0202  | 393  | 1.8386          | 0.5556   |
| 0.7797        | 3.0202  | 524  | 0.9344          | 0.5556   |
| 1.379         | 4.0202  | 655  | 1.5755          | 0.5556   |
| 0.7305        | 5.0202  | 786  | 1.4677          | 0.5556   |
| 0.9115        | 6.0202  | 917  | 1.5456          | 0.5556   |
| 1.6622        | 7.0202  | 1048 | 1.2113          | 0.5556   |
| 0.6868        | 8.0202  | 1179 | 1.8451          | 0.5556   |
| 1.199         | 9.0202  | 1310 | 1.3622          | 0.5556   |
| 0.7459        | 10.0202 | 1441 | 1.4034          | 0.5556   |
| 0.5574        | 11.0202 | 1572 | 0.9836          | 0.5556   |
| 0.3742        | 12.0202 | 1703 | 0.6934          | 0.6889   |
| 0.3303        | 13.0202 | 1834 | 0.7161          | 0.6889   |
| 0.8856        | 14.0202 | 1965 | 1.5608          | 0.5556   |
| 0.186         | 15.0202 | 2096 | 0.7782          | 0.6      |
| 0.7263        | 16.0202 | 2227 | 1.4438          | 0.5778   |
| 1.552         | 17.0202 | 2358 | 1.2117          | 0.6222   |
| 0.1031        | 18.0202 | 2489 | 1.2174          | 0.6667   |
| 1.193         | 19.0202 | 2620 | 1.2043          | 0.6444   |
| 0.322         | 20.0202 | 2751 | 1.3639          | 0.6444   |
| 0.3791        | 21.0202 | 2882 | 1.3107          | 0.6444   |
| 0.6201        | 22.0202 | 3013 | 1.2797          | 0.6889   |
| 0.9547        | 23.0202 | 3144 | 1.1654          | 0.6444   |
| 1.4286        | 24.0202 | 3275 | 1.4078          | 0.6667   |
| 0.6023        | 25.0202 | 3406 | 1.5069          | 0.7333   |
| 0.2925        | 26.0202 | 3537 | 1.4529          | 0.6889   |
| 0.1445        | 27.0202 | 3668 | 1.4417          | 0.7333   |
| 0.2717        | 28.0202 | 3799 | 2.1237          | 0.6444   |
| 0.411         | 29.0202 | 3930 | 1.5399          | 0.6889   |
| 0.6632        | 30.0202 | 4061 | 1.6289          | 0.7333   |
| 0.3           | 31.0202 | 4192 | 1.9944          | 0.6222   |
| 0.386         | 32.0202 | 4323 | 1.9271          | 0.6889   |
| 0.1569        | 33.0202 | 4454 | 1.8172          | 0.6889   |
| 0.2135        | 34.0202 | 4585 | 1.7862          | 0.6889   |
| 0.3142        | 35.0202 | 4716 | 1.6904          | 0.7111   |
| 0.2179        | 36.0202 | 4847 | 1.9549          | 0.7111   |
| 0.7634        | 37.0202 | 4978 | 1.9367          | 0.6889   |
| 0.0008        | 38.0202 | 5109 | 1.9890          | 0.6667   |
| 0.1467        | 39.0202 | 5240 | 1.9472          | 0.6889   |
| 0.6641        | 40.0202 | 5371 | 2.2295          | 0.6889   |
| 0.3125        | 41.0202 | 5502 | 1.8309          | 0.7111   |
| 0.1987        | 42.0202 | 5633 | 2.1643          | 0.6889   |
| 0.067         | 43.0202 | 5764 | 2.1776          | 0.6667   |
| 0.1513        | 44.0202 | 5895 | 2.1978          | 0.6667   |
| 0.0032        | 45.0202 | 6026 | 1.9291          | 0.7333   |
| 0.2596        | 46.0202 | 6157 | 2.0961          | 0.6889   |
| 0.0006        | 47.0202 | 6288 | 2.0126          | 0.7111   |
| 0.0305        | 48.0202 | 6419 | 2.0029          | 0.7333   |
| 0.0004        | 49.0125 | 6500 | 2.0025          | 0.7333   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0