from tensorboardX import TorchVis import numpy as np import pytest import unittest true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] class VisdomTest(unittest.TestCase): def test_TorchVis(self): w = TorchVis('visdom') w.add_scalar('scalar_visdom', 1, 0) w.add_scalar('scalar_visdom', 2, 1) w.add_histogram('histogram_visdom', np.array([1, 2, 3, 4, 5]), 1) w.add_image('image_visdom', np.ndarray((3, 20, 20)), 2) # w.add_video('video_visdom', np.ndarray((1, 3, 10, 20, 20)), 3) w.add_audio('audio_visdom', [1, 2, 3, 4, 5]) w.add_text('text_visdom', 'mystring') w.add_pr_curve('pr_curve_visdom', np.random.randint(2, size=100), np.random.rand(100), 10) w.add_pr_curve_raw('prcurve with raw data', true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, 20) del w