from tensorboardX import SummaryWriter import time import random hparam = {'lr': [0.1, 0.01, 0.001], 'bsize': [1, 2, 4], 'n_hidden': [100, 200]} metrics = {'accuracy', 'loss'} def train(lr, bsize, n_hidden): x = random.random() return x, x*5 with SummaryWriter() as w: for lr in hparam['lr']: for bsize in hparam['bsize']: for n_hidden in hparam['n_hidden']: accu, loss = train(lr, bsize, n_hidden) w.add_hparams({'lr': lr, 'bsize': bsize, 'n_hidden': n_hidden}, {'accuracy': accu, 'loss': loss})