import torch import torchvision.utils as vutils import numpy as np import torchvision.models as models from torchvision import datasets from tensorboardX import SummaryWriter import datetime resnet18 = models.resnet18(False) writer = SummaryWriter() sample_rate = 44100 freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] for n_iter in range(100): s1 = torch.rand(1) # value to keep s2 = torch.rand(1) # data grouping by `slash` writer.add_scalar('data/scalar_systemtime', s1[0], n_iter) # data grouping by `slash` writer.add_scalar('data/scalar_customtime', s1[0], n_iter, walltime=n_iter) writer.add_scalars('data/scalar_group', {"xsinx": n_iter * np.sin(n_iter), "xcosx": n_iter * np.cos(n_iter), "arctanx": np.arctan(n_iter)}, n_iter) x = torch.rand(32, 3, 64, 64) # output from network if n_iter % 10 == 0: x = vutils.make_grid(x, normalize=True, scale_each=True) writer.add_image('Image', x, n_iter) # Tensor writer.add_image_with_boxes('imagebox_label', torch.ones(3, 240, 240) * 0.5, torch.Tensor([[10, 10, 100, 100], [101, 101, 200, 200]]), n_iter, labels=['abcde' + str(n_iter), 'fgh' + str(n_iter)]) x = torch.zeros(sample_rate * 2) for i in range(x.size(0)): # sound amplitude should in [-1, 1] x[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate)) writer.add_audio('myAudio', x, n_iter) writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter) writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter) for name, param in resnet18.named_parameters(): if 'bn' not in name: writer.add_histogram(name, param, n_iter) writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand( 100), n_iter) # needs tensorboard 0.4RC or later writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, n_iter) # export scalar data to JSON for external processing writer.export_scalars_to_json("./all_scalars.json") dataset = datasets.MNIST('mnist', train=False, download=True) images = dataset.test_data[:100].float() label = dataset.test_labels[:100] features = images.view(100, 784) writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1)) writer.add_embedding(features, global_step=1, tag='noMetadata') dataset = datasets.MNIST('mnist', train=True, download=True) images_train = dataset.train_data[:100].float() labels_train = dataset.train_labels[:100] features_train = images_train.view(100, 784) all_features = torch.cat((features, features_train)) all_labels = torch.cat((label, labels_train)) all_images = torch.cat((images, images_train)) dataset_label = ['test'] * 100 + ['train'] * 100 all_labels = list(zip(all_labels, dataset_label)) writer.add_embedding(all_features, metadata=all_labels, label_img=all_images.unsqueeze(1), metadata_header=['digit', 'dataset'], global_step=2) # VIDEO vid_images = dataset.train_data[:16 * 48] vid = vid_images.view(16, 48, 1, 28, 28) # BxTxCxHxW writer.add_video('video', vid_tensor=vid) writer.add_video('video_1_fps', vid_tensor=vid, fps=1) writer.close()