from tensorboardX import SummaryWriter | |
import time | |
import random | |
hparam = {'lr': [0.1, 0.01, 0.001], | |
'bsize': [1, 2, 4], | |
'n_hidden': [100, 200]} | |
metrics = {'accuracy', 'loss'} | |
def train(lr, bsize, n_hidden): | |
x = random.random() | |
return x, x*5 | |
with SummaryWriter() as w: | |
for lr in hparam['lr']: | |
for bsize in hparam['bsize']: | |
for n_hidden in hparam['n_hidden']: | |
accu, loss = train(lr, bsize, n_hidden) | |
w.add_hparams({'lr': lr, 'bsize': bsize, 'n_hidden': n_hidden}, | |
{'accuracy': accu, 'loss': loss}) | |