|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Simple MNIST classifier to demonstrate features of Beholder. |
|
|
|
Based on tensorflow/examples/tutorials/mnist/mnist_with_summaries.py. |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import tensorboardX.beholder as beholder_lib |
|
import time |
|
|
|
from collections import namedtuple |
|
|
|
|
|
LOG_DIRECTORY = '/tmp/beholder-demo' |
|
tensor_and_name = namedtuple('tensor_and_name', 'tensor, name') |
|
|
|
|
|
def beholder_pytorch(): |
|
for i in range(1000): |
|
fake_param = [tensor_and_name(np.random.randn(128, 768, 3), 'test' + str(i)) |
|
for i in range(5)] |
|
arrays = [tensor_and_name(np.random.randn(128, 768, 3), 'test' + str(i)) |
|
for i in range(5)] |
|
beholder = beholder_lib.Beholder(logdir=LOG_DIRECTORY) |
|
beholder.update( |
|
trainable=fake_param, |
|
arrays=arrays, |
|
frame=np.random.randn(128, 128), |
|
) |
|
time.sleep(0.1) |
|
print(i) |
|
|
|
|
|
if __name__ == '__main__': |
|
import os |
|
if not os.path.exists(LOG_DIRECTORY): |
|
os.makedirs(LOG_DIRECTORY) |
|
print(LOG_DIRECTORY) |
|
beholder_pytorch() |
|
|