File size: 12,932 Bytes
c508d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from tensorboardX import SummaryWriter
import os
import unittest

# try:
import numpy as np
import caffe2.python.brew as brew
import caffe2.python.cnn as cnn
import caffe2.python.core as core
import caffe2.python.model_helper as model_helper
from caffe2.proto import caffe2_pb2
from caffe2.python import workspace
import tensorboardX.caffe2_graph as tb
from tensorboardX import x2num
from .expect_reader import compare_proto, write_proto


class Caffe2Test(unittest.TestCase):
    def test_caffe2_np(self):
        workspace.FeedBlob("testBlob", np.random.randn(1, 3, 64, 64).astype(np.float32))
        assert isinstance(x2num.make_np('testBlob'), np.ndarray)
        # assert isinstance(x2num.make_np('testBlob', 'IMG'), np.ndarray)

    def test_that_operators_gets_non_colliding_names(self):
        op = caffe2_pb2.OperatorDef()
        op.type = 'foo'
        op.input.extend(['foo'])
        tb._fill_missing_operator_names([op])
        self.assertEqual(op.input[0], 'foo')
        self.assertEqual(op.name, 'foo_1')

    def test_that_replacing_colons_gives_non_colliding_names(self):
        # .. and update shapes
        op = caffe2_pb2.OperatorDef()
        op.name = 'foo:0'
        op.input.extend(['foo:0', 'foo$0'])
        shapes = {'foo:0': [1]}
        blob_name_tracker = tb._get_blob_names([op])
        tb._replace_colons(shapes, blob_name_tracker, [op], '$')
        self.assertEqual(op.input[0], 'foo$0')
        self.assertEqual(op.input[1], 'foo$0_1')
        # Collision but blobs and op names are handled later by
        # _fill_missing_operator_names.
        self.assertEqual(op.name, 'foo$0')
        self.assertEqual(len(shapes), 1)
        self.assertEqual(shapes['foo$0'], [1])
        self.assertEqual(len(blob_name_tracker), 2)
        self.assertEqual(blob_name_tracker['foo$0'], 'foo:0')
        self.assertEqual(blob_name_tracker['foo$0_1'], 'foo$0')

    def test_that_adding_gradient_scope_does_no_fancy_renaming(self):
        # because it cannot create collisions
        op = caffe2_pb2.OperatorDef()
        op.name = 'foo_grad'
        op.input.extend(['foo_grad', 'foo_grad_1'])
        shapes = {'foo_grad': [1]}
        blob_name_tracker = tb._get_blob_names([op])
        tb._add_gradient_scope(shapes, blob_name_tracker, [op])
        self.assertEqual(op.input[0], 'GRADIENTS/foo_grad')
        self.assertEqual(op.input[1], 'GRADIENTS/foo_grad_1')
        self.assertEqual(op.name, 'GRADIENTS/foo_grad')
        self.assertEqual(len(shapes), 1)
        self.assertEqual(shapes['GRADIENTS/foo_grad'], [1])
        self.assertEqual(len(blob_name_tracker), 2)
        self.assertEqual(
            blob_name_tracker['GRADIENTS/foo_grad'], 'foo_grad')
        self.assertEqual(
            blob_name_tracker['GRADIENTS/foo_grad_1'], 'foo_grad_1')

    def test_that_auto_ssa_gives_non_colliding_names(self):
        op1 = caffe2_pb2.OperatorDef()
        op1.output.extend(['foo'])
        op2 = caffe2_pb2.OperatorDef()
        op2.input.extend(['foo'])
        op2.output.extend(['foo'])
        op2.output.extend(['foo_1'])
        shapes = {'foo': [1], 'foo_1': [2]}
        blob_name_tracker = tb._get_blob_names([op1, op2])
        tb._convert_to_ssa(shapes, blob_name_tracker, [op1, op2])
        self.assertEqual(op1.output[0], 'foo')
        self.assertEqual(op2.input[0], 'foo')
        self.assertEqual(op2.output[0], 'foo_1')
        # Unfortunate name but we do not parse original `_` for now.
        self.assertEqual(op2.output[1], 'foo_1_1')
        self.assertEqual(len(shapes), 3)
        self.assertEqual(shapes['foo'], [1])
        self.assertEqual(shapes['foo_1'], [1])
        self.assertEqual(shapes['foo_1_1'], [2])
        self.assertEqual(len(blob_name_tracker), 3)
        self.assertEqual(blob_name_tracker['foo'], 'foo')
        self.assertEqual(blob_name_tracker['foo_1'], 'foo')
        self.assertEqual(blob_name_tracker['foo_1_1'], 'foo_1')

    def test_renaming_tensorflow_style(self):
        # Construct some dummy operators here
        # NOTE: '_w', '_bn', etc without the postfix '_' are only renamed when
        # they are at the very end of the name.
        # Test that '_w', '_w_' are renamed to '/weight', '/weight_', resp.
        op1 = caffe2_pb2.OperatorDef()
        op1.input.extend(['foo_w'])
        op1.output.extend(['foo_w_2'])
        # Test that '_bn', '_bn_' are renamed to '/batchnorm', '/batchnorm_',
        # respectively.
        op2 = caffe2_pb2.OperatorDef()
        op2.input.extend(['foo_bn'])
        op2.output.extend(['foo_bn_2'])
        # Test that '_b', '_b_', are renamed to '/bias', '/bias_', resp.
        op3 = caffe2_pb2.OperatorDef()
        op3.input.extend(['foo_b'])
        op3.output.extend(['foo_b_2'])
        # Test that '_s', '_s_', are renamed to '/scale', '/scale_', resp.
        op4 = caffe2_pb2.OperatorDef()
        op4.input.extend(['foo_s'])
        op4.output.extend(['foo_s_2'])
        # Test that '_sum', '_sum_', are renamed to '/sum', '/sum_', resp.
        op5 = caffe2_pb2.OperatorDef()
        op5.input.extend(['foo_sum'])
        op5.output.extend(['foo_sum_2'])
        # Test that '_branch', '_branch_', are renamed to '/branch', '/branch_',
        # respectively. Multiple inputs/outputs are also tested in this case.
        op6 = caffe2_pb2.OperatorDef()
        op6.input.extend(['foo_branch'])
        op6.input.extend(['test_branch_2'])
        op6.output.extend(['foo_branch_3'])
        op6.output.extend(['test_branch4'])
        shapes = {
            'foo_w': [1], 'foo_w_2': [2], 'foo_bn': [3], 'foo_bn_2': [4],
            'foo_b': [5], 'foo_b_2': [6], 'foo_s': [7], 'foo_s_2': [8],
            'foo_sum': [9], 'foo_sum_2': [10], 'foo_branch': [11],
            'test_branch_2': [12], 'foo_branch_3': [13], 'test_branch4': [14],
        }
        ops = [op1, op2, op3, op4, op5, op6]
        blob_name_tracker = tb._get_blob_names(ops)
        tb._rename_tensorflow_style(shapes, blob_name_tracker, ops)
        # Testing that keys in blob name tracker were renamed correctly
        self.assertEqual(blob_name_tracker['foo/weight'], 'foo_w')
        self.assertEqual(blob_name_tracker['foo/weight_2'], 'foo_w_2')
        self.assertEqual(blob_name_tracker['foo/batchnorm'], 'foo_bn')
        self.assertEqual(blob_name_tracker['foo/batchnorm_2'], 'foo_bn_2')
        self.assertEqual(blob_name_tracker['foo/bias'], 'foo_b')
        self.assertEqual(blob_name_tracker['foo/bias_2'], 'foo_b_2')
        self.assertEqual(blob_name_tracker['foo/scale'], 'foo_s')
        self.assertEqual(blob_name_tracker['foo/scale_2'], 'foo_s_2')
        self.assertEqual(blob_name_tracker['foo/sum'], 'foo_sum')
        self.assertEqual(blob_name_tracker['foo/sum_2'], 'foo_sum_2')
        self.assertEqual(blob_name_tracker['foo/branch'], 'foo_branch')
        self.assertEqual(blob_name_tracker['test/branch_2'], 'test_branch_2')
        self.assertEqual(blob_name_tracker['foo/branch_3'], 'foo_branch_3')
        self.assertEqual(blob_name_tracker['test/branch4'], 'test_branch4')
        # Testing that keys in shapes were renamed correctly
        self.assertEqual(shapes['foo/weight'], [1])
        self.assertEqual(shapes['foo/batchnorm_2'], [4])
        self.assertEqual(shapes['foo/sum'], [9])
        self.assertEqual(shapes['test/branch_2'], [12])
        # Testing that the ops were renamed correctly
        self.assertEqual(op1.input[0], 'foo/weight')
        self.assertEqual(op1.output[0], 'foo/weight_2')
        self.assertEqual(op2.input[0], 'foo/batchnorm')
        self.assertEqual(op2.output[0], 'foo/batchnorm_2')
        self.assertEqual(op3.input[0], 'foo/bias')
        self.assertEqual(op3.output[0], 'foo/bias_2')
        self.assertEqual(op4.input[0], 'foo/scale')
        self.assertEqual(op4.output[0], 'foo/scale_2')
        self.assertEqual(op5.input[0], 'foo/sum')
        self.assertEqual(op5.output[0], 'foo/sum_2')
        self.assertEqual(op6.input[0], 'foo/branch')
        self.assertEqual(op6.input[1], 'test/branch_2')
        self.assertEqual(op6.output[0], 'foo/branch_3')
        self.assertEqual(op6.output[1], 'test/branch4')

    def test_filter_ops(self):
        op1 = caffe2_pb2.OperatorDef()
        op1.input.extend(['remove_this'])
        op1.output.extend(['random_output'])
        op2 = caffe2_pb2.OperatorDef()
        op2.input.extend(['leave_this'])
        op2.output.extend(['leave_this_also'])
        op3 = caffe2_pb2.OperatorDef()
        op3.input.extend(['random_input'])
        op3.output.extend(['remove_this_also'])

        def filter_fn(blob):
            # Filter all blobs with names containing 'remove'
            return 'remove' not in str(blob)

        op_set1 = [op1, op2, op3]
        op_set2 = [op1, op2, op3]

        # Test case for when perform_filter = True.
        result_ops1 = tb._filter_ops(op_set1, filter_fn, True)
        new_op1, new_op2 = result_ops1[0], result_ops1[1]
        # input named 'remove_this' should have been filtered
        self.assertEqual(len(new_op1.input), 0)
        self.assertEqual(new_op1.output, ['random_output'])
        self.assertEqual(new_op2.input, ['leave_this'])
        self.assertEqual(new_op2.output, ['leave_this_also'])
        # output named 'remove_this_also' should have been filtered as well.
        # This should have also removed op3 as the filter function excludes ops
        # with no outputs.
        self.assertEqual(len(result_ops1), 2)

        # Test case for when perform_filter = False. op_set2 should remain
        # unchanged.
        result_ops2 = tb._filter_ops(op_set2, filter_fn, False)
        self.assertEqual(result_ops2, op_set2)

    # Use show_simplified=False. This shows the original style of graph
    # visualization from caffe2.contrib.tensorboard.
    # TODO: Add test for show_simplified=True.
    def test_simple_cnnmodel(self):
        model = cnn.CNNModelHelper("NCHW", name="overfeat")
        workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
        workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
        with core.NameScope("conv1"):
            conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4)
            relu1 = model.Relu(conv1, conv1)
            pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2)
        with core.NameScope("classifier"):
            fc = model.FC(pool1, "fc", 4096, 1000)
            pred = model.Softmax(fc, "pred")
            xent = model.LabelCrossEntropy([pred, "label"], "xent")
            loss = model.AveragedLoss(xent, "loss")

        blob_name_tracker = {}
        graph = tb.model_to_graph_def(
            model,
            blob_name_tracker=blob_name_tracker,
            shapes={},
            show_simplified=False,
        )

        compare_proto(graph, self)

    # cnn.CNNModelHelper is deprecated, so we also test with
    # model_helper.ModelHelper. The model used in this test is taken from the
    # Caffe2 MNIST tutorial. Also use show_simplified=False here.
    def test_simple_model(self):
        model = model_helper.ModelHelper(name="mnist")
        # how come those inputs don't break the forward pass =.=a
        workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
        workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))

        with core.NameScope("conv1"):
            conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
            # Image size: 24 x 24 -> 12 x 12
            pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
            # Image size: 12 x 12 -> 8 x 8
            conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
            # Image size: 8 x 8 -> 4 x 4
            pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
        with core.NameScope("classifier"):
            # 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
            fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
            relu = brew.relu(model, fc3, fc3)
            pred = brew.fc(model, relu, 'pred', 500, 10)
            softmax = brew.softmax(model, pred, 'softmax')
            xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
            # compute the expected loss
            loss = model.AveragedLoss(xent, "loss")
        model.net.RunAllOnMKL()
        model.param_init_net.RunAllOnMKL()
        model.AddGradientOperators([loss], skip=1)
        blob_name_tracker = {}
        graph = tb.model_to_graph_def(
            model,
            blob_name_tracker=blob_name_tracker,
            shapes={},
            show_simplified=False,
        )

        compare_proto(graph, self)


if __name__ == "__main__":
    unittest.main()