File size: 12,932 Bytes
c508d7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from tensorboardX import SummaryWriter
import os
import unittest
# try:
import numpy as np
import caffe2.python.brew as brew
import caffe2.python.cnn as cnn
import caffe2.python.core as core
import caffe2.python.model_helper as model_helper
from caffe2.proto import caffe2_pb2
from caffe2.python import workspace
import tensorboardX.caffe2_graph as tb
from tensorboardX import x2num
from .expect_reader import compare_proto, write_proto
class Caffe2Test(unittest.TestCase):
def test_caffe2_np(self):
workspace.FeedBlob("testBlob", np.random.randn(1, 3, 64, 64).astype(np.float32))
assert isinstance(x2num.make_np('testBlob'), np.ndarray)
# assert isinstance(x2num.make_np('testBlob', 'IMG'), np.ndarray)
def test_that_operators_gets_non_colliding_names(self):
op = caffe2_pb2.OperatorDef()
op.type = 'foo'
op.input.extend(['foo'])
tb._fill_missing_operator_names([op])
self.assertEqual(op.input[0], 'foo')
self.assertEqual(op.name, 'foo_1')
def test_that_replacing_colons_gives_non_colliding_names(self):
# .. and update shapes
op = caffe2_pb2.OperatorDef()
op.name = 'foo:0'
op.input.extend(['foo:0', 'foo$0'])
shapes = {'foo:0': [1]}
blob_name_tracker = tb._get_blob_names([op])
tb._replace_colons(shapes, blob_name_tracker, [op], '$')
self.assertEqual(op.input[0], 'foo$0')
self.assertEqual(op.input[1], 'foo$0_1')
# Collision but blobs and op names are handled later by
# _fill_missing_operator_names.
self.assertEqual(op.name, 'foo$0')
self.assertEqual(len(shapes), 1)
self.assertEqual(shapes['foo$0'], [1])
self.assertEqual(len(blob_name_tracker), 2)
self.assertEqual(blob_name_tracker['foo$0'], 'foo:0')
self.assertEqual(blob_name_tracker['foo$0_1'], 'foo$0')
def test_that_adding_gradient_scope_does_no_fancy_renaming(self):
# because it cannot create collisions
op = caffe2_pb2.OperatorDef()
op.name = 'foo_grad'
op.input.extend(['foo_grad', 'foo_grad_1'])
shapes = {'foo_grad': [1]}
blob_name_tracker = tb._get_blob_names([op])
tb._add_gradient_scope(shapes, blob_name_tracker, [op])
self.assertEqual(op.input[0], 'GRADIENTS/foo_grad')
self.assertEqual(op.input[1], 'GRADIENTS/foo_grad_1')
self.assertEqual(op.name, 'GRADIENTS/foo_grad')
self.assertEqual(len(shapes), 1)
self.assertEqual(shapes['GRADIENTS/foo_grad'], [1])
self.assertEqual(len(blob_name_tracker), 2)
self.assertEqual(
blob_name_tracker['GRADIENTS/foo_grad'], 'foo_grad')
self.assertEqual(
blob_name_tracker['GRADIENTS/foo_grad_1'], 'foo_grad_1')
def test_that_auto_ssa_gives_non_colliding_names(self):
op1 = caffe2_pb2.OperatorDef()
op1.output.extend(['foo'])
op2 = caffe2_pb2.OperatorDef()
op2.input.extend(['foo'])
op2.output.extend(['foo'])
op2.output.extend(['foo_1'])
shapes = {'foo': [1], 'foo_1': [2]}
blob_name_tracker = tb._get_blob_names([op1, op2])
tb._convert_to_ssa(shapes, blob_name_tracker, [op1, op2])
self.assertEqual(op1.output[0], 'foo')
self.assertEqual(op2.input[0], 'foo')
self.assertEqual(op2.output[0], 'foo_1')
# Unfortunate name but we do not parse original `_` for now.
self.assertEqual(op2.output[1], 'foo_1_1')
self.assertEqual(len(shapes), 3)
self.assertEqual(shapes['foo'], [1])
self.assertEqual(shapes['foo_1'], [1])
self.assertEqual(shapes['foo_1_1'], [2])
self.assertEqual(len(blob_name_tracker), 3)
self.assertEqual(blob_name_tracker['foo'], 'foo')
self.assertEqual(blob_name_tracker['foo_1'], 'foo')
self.assertEqual(blob_name_tracker['foo_1_1'], 'foo_1')
def test_renaming_tensorflow_style(self):
# Construct some dummy operators here
# NOTE: '_w', '_bn', etc without the postfix '_' are only renamed when
# they are at the very end of the name.
# Test that '_w', '_w_' are renamed to '/weight', '/weight_', resp.
op1 = caffe2_pb2.OperatorDef()
op1.input.extend(['foo_w'])
op1.output.extend(['foo_w_2'])
# Test that '_bn', '_bn_' are renamed to '/batchnorm', '/batchnorm_',
# respectively.
op2 = caffe2_pb2.OperatorDef()
op2.input.extend(['foo_bn'])
op2.output.extend(['foo_bn_2'])
# Test that '_b', '_b_', are renamed to '/bias', '/bias_', resp.
op3 = caffe2_pb2.OperatorDef()
op3.input.extend(['foo_b'])
op3.output.extend(['foo_b_2'])
# Test that '_s', '_s_', are renamed to '/scale', '/scale_', resp.
op4 = caffe2_pb2.OperatorDef()
op4.input.extend(['foo_s'])
op4.output.extend(['foo_s_2'])
# Test that '_sum', '_sum_', are renamed to '/sum', '/sum_', resp.
op5 = caffe2_pb2.OperatorDef()
op5.input.extend(['foo_sum'])
op5.output.extend(['foo_sum_2'])
# Test that '_branch', '_branch_', are renamed to '/branch', '/branch_',
# respectively. Multiple inputs/outputs are also tested in this case.
op6 = caffe2_pb2.OperatorDef()
op6.input.extend(['foo_branch'])
op6.input.extend(['test_branch_2'])
op6.output.extend(['foo_branch_3'])
op6.output.extend(['test_branch4'])
shapes = {
'foo_w': [1], 'foo_w_2': [2], 'foo_bn': [3], 'foo_bn_2': [4],
'foo_b': [5], 'foo_b_2': [6], 'foo_s': [7], 'foo_s_2': [8],
'foo_sum': [9], 'foo_sum_2': [10], 'foo_branch': [11],
'test_branch_2': [12], 'foo_branch_3': [13], 'test_branch4': [14],
}
ops = [op1, op2, op3, op4, op5, op6]
blob_name_tracker = tb._get_blob_names(ops)
tb._rename_tensorflow_style(shapes, blob_name_tracker, ops)
# Testing that keys in blob name tracker were renamed correctly
self.assertEqual(blob_name_tracker['foo/weight'], 'foo_w')
self.assertEqual(blob_name_tracker['foo/weight_2'], 'foo_w_2')
self.assertEqual(blob_name_tracker['foo/batchnorm'], 'foo_bn')
self.assertEqual(blob_name_tracker['foo/batchnorm_2'], 'foo_bn_2')
self.assertEqual(blob_name_tracker['foo/bias'], 'foo_b')
self.assertEqual(blob_name_tracker['foo/bias_2'], 'foo_b_2')
self.assertEqual(blob_name_tracker['foo/scale'], 'foo_s')
self.assertEqual(blob_name_tracker['foo/scale_2'], 'foo_s_2')
self.assertEqual(blob_name_tracker['foo/sum'], 'foo_sum')
self.assertEqual(blob_name_tracker['foo/sum_2'], 'foo_sum_2')
self.assertEqual(blob_name_tracker['foo/branch'], 'foo_branch')
self.assertEqual(blob_name_tracker['test/branch_2'], 'test_branch_2')
self.assertEqual(blob_name_tracker['foo/branch_3'], 'foo_branch_3')
self.assertEqual(blob_name_tracker['test/branch4'], 'test_branch4')
# Testing that keys in shapes were renamed correctly
self.assertEqual(shapes['foo/weight'], [1])
self.assertEqual(shapes['foo/batchnorm_2'], [4])
self.assertEqual(shapes['foo/sum'], [9])
self.assertEqual(shapes['test/branch_2'], [12])
# Testing that the ops were renamed correctly
self.assertEqual(op1.input[0], 'foo/weight')
self.assertEqual(op1.output[0], 'foo/weight_2')
self.assertEqual(op2.input[0], 'foo/batchnorm')
self.assertEqual(op2.output[0], 'foo/batchnorm_2')
self.assertEqual(op3.input[0], 'foo/bias')
self.assertEqual(op3.output[0], 'foo/bias_2')
self.assertEqual(op4.input[0], 'foo/scale')
self.assertEqual(op4.output[0], 'foo/scale_2')
self.assertEqual(op5.input[0], 'foo/sum')
self.assertEqual(op5.output[0], 'foo/sum_2')
self.assertEqual(op6.input[0], 'foo/branch')
self.assertEqual(op6.input[1], 'test/branch_2')
self.assertEqual(op6.output[0], 'foo/branch_3')
self.assertEqual(op6.output[1], 'test/branch4')
def test_filter_ops(self):
op1 = caffe2_pb2.OperatorDef()
op1.input.extend(['remove_this'])
op1.output.extend(['random_output'])
op2 = caffe2_pb2.OperatorDef()
op2.input.extend(['leave_this'])
op2.output.extend(['leave_this_also'])
op3 = caffe2_pb2.OperatorDef()
op3.input.extend(['random_input'])
op3.output.extend(['remove_this_also'])
def filter_fn(blob):
# Filter all blobs with names containing 'remove'
return 'remove' not in str(blob)
op_set1 = [op1, op2, op3]
op_set2 = [op1, op2, op3]
# Test case for when perform_filter = True.
result_ops1 = tb._filter_ops(op_set1, filter_fn, True)
new_op1, new_op2 = result_ops1[0], result_ops1[1]
# input named 'remove_this' should have been filtered
self.assertEqual(len(new_op1.input), 0)
self.assertEqual(new_op1.output, ['random_output'])
self.assertEqual(new_op2.input, ['leave_this'])
self.assertEqual(new_op2.output, ['leave_this_also'])
# output named 'remove_this_also' should have been filtered as well.
# This should have also removed op3 as the filter function excludes ops
# with no outputs.
self.assertEqual(len(result_ops1), 2)
# Test case for when perform_filter = False. op_set2 should remain
# unchanged.
result_ops2 = tb._filter_ops(op_set2, filter_fn, False)
self.assertEqual(result_ops2, op_set2)
# Use show_simplified=False. This shows the original style of graph
# visualization from caffe2.contrib.tensorboard.
# TODO: Add test for show_simplified=True.
def test_simple_cnnmodel(self):
model = cnn.CNNModelHelper("NCHW", name="overfeat")
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4)
relu1 = model.Relu(conv1, conv1)
pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2)
with core.NameScope("classifier"):
fc = model.FC(pool1, "fc", 4096, 1000)
pred = model.Softmax(fc, "pred")
xent = model.LabelCrossEntropy([pred, "label"], "xent")
loss = model.AveragedLoss(xent, "loss")
blob_name_tracker = {}
graph = tb.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
# cnn.CNNModelHelper is deprecated, so we also test with
# model_helper.ModelHelper. The model used in this test is taken from the
# Caffe2 MNIST tutorial. Also use show_simplified=False here.
def test_simple_model(self):
model = model_helper.ModelHelper(name="mnist")
# how come those inputs don't break the forward pass =.=a
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
with core.NameScope("classifier"):
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
relu = brew.relu(model, fc3, fc3)
pred = brew.fc(model, relu, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
# compute the expected loss
loss = model.AveragedLoss(xent, "loss")
model.net.RunAllOnMKL()
model.param_init_net.RunAllOnMKL()
model.AddGradientOperators([loss], skip=1)
blob_name_tracker = {}
graph = tb.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
if __name__ == "__main__":
unittest.main()
|