File size: 2,311 Bytes
c508d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import math
import numpy as np
from tensorboardX import SummaryWriter


def main():
    degrees = np.linspace(0, 3600 * math.pi / 180.0, 3600)
    degrees = degrees.reshape(3600, 1)
    labels = ["%d" % (i) for i in range(0, 3600)]

    with SummaryWriter() as writer:
        # Maybe make a bunch of data that's always shifted in some
        # way, and that will be hard for PCA to turn into a sphere?

        for epoch in range(0, 16):
            shift = epoch * 2 * math.pi / 16.0
            mat = np.concatenate([
                np.sin(shift + degrees * 2 * math.pi / 180.0),
                np.sin(shift + degrees * 3 * math.pi / 180.0),
                np.sin(shift + degrees * 5 * math.pi / 180.0),
                np.sin(shift + degrees * 7 * math.pi / 180.0),
                np.sin(shift + degrees * 11 * math.pi / 180.0)
            ], axis=1)
            writer.add_embedding(
                mat=mat,
                metadata=labels,
                tag="sin",
                global_step=epoch)

            mat = np.concatenate([
                np.cos(shift + degrees * 2 * math.pi / 180.0),
                np.cos(shift + degrees * 3 * math.pi / 180.0),
                np.cos(shift + degrees * 5 * math.pi / 180.0),
                np.cos(shift + degrees * 7 * math.pi / 180.0),
                np.cos(shift + degrees * 11 * math.pi / 180.0)
            ], axis=1)
            writer.add_embedding(
                mat=mat,
                metadata=labels,
                tag="cos",
                global_step=epoch)

            mat = np.concatenate([
                np.tan(shift + degrees * 2 * math.pi / 180.0),
                np.tan(shift + degrees * 3 * math.pi / 180.0),
                np.tan(shift + degrees * 5 * math.pi / 180.0),
                np.tan(shift + degrees * 7 * math.pi / 180.0),
                np.tan(shift + degrees * 11 * math.pi / 180.0)
            ], axis=1)
            writer.add_embedding(
                mat=mat,
                metadata=labels,
                tag="tan",
                global_step=epoch)


if __name__ == "__main__":
    main()

# tensorboard --logdir runs
# Under "Projection, you should see
#  48 tensor found named
#     cos:cos-00000 to cos:cos-00016
#     sin:sin-00000 to sin:sin-00016
#     tan:tan-00000 to tan:tan-00016