Cline AI Assistant commited on
Commit
714860d
·
1 Parent(s): 2eeb731

Upload Mars pressure prediction model and documentation

Browse files
Files changed (1) hide show
  1. README.md +33 -79
README.md CHANGED
@@ -1,93 +1,47 @@
1
  ---
2
- language: code
3
- tags:
4
- - mars
5
- - atmospheric-science
6
- - regression
7
- - environmental-monitoring
 
 
8
  license: mit
9
- metrics:
10
- - mae
11
- - rmse
12
- - r2_score
13
  ---
14
 
15
- # Mars Atmospheric Pressure Prediction Model
16
 
17
- This model predicts atmospheric pressure on Mars using environmental measurements from the REMS (Rover Environmental Monitoring Station) dataset.
18
 
19
- ## Model Performance
20
-
21
- - Mean Absolute Error: 34.79 Pa
22
- - Root Mean Squared Error: 44.81 Pa
23
- - R² Score: 0.397
24
- - Cross-validation R² Score: 0.335 (±0.102)
25
- - Prediction Uncertainty (±1 std): ±44.8 Pa
26
-
27
- ## Feature Importance
28
-
29
- 1. Maximum Ground Temperature: 0.7104 (±0.0450)
30
- 2. Minimum Air Temperature: 0.4002 (±0.0341)
31
- 3. Maximum Air Temperature: 0.2830 (±0.0212)
32
- 4. Minimum Ground Temperature: 0.2138 (±0.0253)
33
-
34
- ## Input Features
35
-
36
- - max_ground_temp(°C): Maximum ground temperature
37
- - min_ground_temp(°C): Minimum ground temperature
38
- - max_air_temp(°C): Maximum air temperature
39
- - min_air_temp(°C): Minimum air temperature
40
- - Seasonal features (automatically encoded)
41
-
42
- ## Prediction Range
43
 
44
- - Actual pressure range: 703.0 to 924.0 Pa
45
- - Model prediction range: 736.2 to 931.1 Pa
 
 
 
 
46
 
47
- ## Usage
 
 
 
48
 
49
- ```python
50
- import joblib
51
-
52
- # Load the model
53
- model_info = joblib.load('mars_pressure_model.joblib')
54
-
55
- # Access components
56
- model = model_info['model']
57
- scaler = model_info['scaler']
58
- feature_columns = model_info['feature_columns']
59
-
60
- # Make predictions (after preparing features in the same format)
61
- X_scaled = scaler.transform(X)
62
- predictions = model.predict(X_scaled)
63
- ```
64
-
65
- ## Model Details
66
-
67
- - Type: HistGradientBoostingRegressor
68
- - Training samples: 3,170
69
- - Features: 10 (including encoded seasonal features)
70
- - Target: Atmospheric pressure in Pascals (Pa)
71
-
72
- ## Limitations
73
 
74
- - The model performs moderately with an R² score of 0.397
75
- - Temporal features (month, day) showed limited importance
76
- - Prediction uncertainty is approximately ±44.8 Pa
77
- - Missing values in the original dataset were handled by the model
78
 
79
- ## Dataset
80
 
81
- This model was trained on the REMS (Rover Environmental Monitoring Station) Mars dataset, which contains environmental measurements collected on Mars. The dataset includes temperature, pressure, and other environmental parameters measured over time.
 
 
82
 
83
- ## Citation
84
 
85
- If you use this model, please cite:
86
- ```
87
- @misc{mars_pressure_model_2025,
88
- title={Mars Atmospheric Pressure Prediction Model},
89
- author={Cline AI Assistant},
90
- year={2025},
91
- publisher={HuggingFace},
92
- note={Based on REMS Mars Dataset}
93
- }
 
1
  ---
2
+ title: Mars Atmospheric Pressure Predictor
3
+ emoji: 🌡️
4
+ colorFrom: red
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 5.13.1
8
+ app_file: app.py
9
+ pinned: false
10
  license: mit
 
 
 
 
11
  ---
12
 
13
+ # Mars Atmospheric Pressure Predictor
14
 
15
+ This Space hosts an interactive interface for predicting atmospheric pressure on Mars based on environmental measurements. The model was trained on data from the REMS (Rover Environmental Monitoring Station) dataset.
16
 
17
+ ## How to Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ 1. Adjust the sliders for:
20
+ - Maximum Ground Temperature (°C)
21
+ - Minimum Ground Temperature (°C)
22
+ - Maximum Air Temperature (°C)
23
+ - Minimum Air Temperature (°C)
24
+ - Month (1-12)
25
 
26
+ 2. The model will predict:
27
+ - Atmospheric pressure in Pascals (Pa)
28
+ - A prediction range accounting for uncertainty
29
+ - The uncertainty margin (±Pa)
30
 
31
+ ## Model Performance
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ - Mean Absolute Error: 34.97 Pa
34
+ - Score: 0.413
35
+ - Prediction Uncertainty: ±44.2 Pa
 
36
 
37
+ ## Example Values
38
 
39
+ - Average conditions: -13°C max ground, -75°C min ground, 2°C max air, -80°C min air
40
+ - Warmest conditions: 11°C max ground, -52°C min ground, 24°C max air, -8°C min air
41
+ - Coldest conditions: -67°C max ground, -100°C min ground, -61°C max air, -136°C min air
42
 
43
+ ## Notes
44
 
45
+ - The model performs moderately with an R² score of 0.413
46
+ - Predictions include uncertainty estimates
47
+ - Temperature ranges are based on actual Mars measurements