bayrameker commited on
Commit
fcc005e
·
verified ·
1 Parent(s): 1d2d264

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -120
README.md CHANGED
@@ -1,200 +1,183 @@
 
1
  ---
2
  library_name: transformers
3
  tags:
4
  - unsloth
5
  ---
6
 
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
 
 
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
18
 
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
  ## Uses
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
 
41
  ### Direct Use
42
 
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
 
47
- ### Downstream Use [optional]
48
 
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
 
53
  ### Out-of-Scope Use
54
 
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
 
59
  ## Bias, Risks, and Limitations
60
 
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
 
63
- [More Information Needed]
 
 
64
 
65
  ### Recommendations
66
 
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
 
71
  ## How to Get Started with the Model
72
 
73
- Use the code below to get started with the model.
74
 
75
- [More Information Needed]
 
 
76
 
77
- ## Training Details
 
78
 
79
- ### Training Data
 
 
 
80
 
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
82
 
83
- [More Information Needed]
84
 
85
- ### Training Procedure
 
 
86
 
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
 
88
 
89
- #### Preprocessing [optional]
 
 
 
 
 
 
90
 
91
- [More Information Needed]
 
 
92
 
 
93
 
94
- #### Training Hyperparameters
95
 
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
97
 
98
- #### Speeds, Sizes, Times [optional]
99
 
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
 
 
 
 
101
 
102
- [More Information Needed]
 
 
103
 
104
  ## Evaluation
105
 
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
  ### Testing Data, Factors & Metrics
109
 
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
 
128
  ### Results
129
 
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
 
136
  ## Model Examination [optional]
137
 
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
 
142
  ## Environmental Impact
143
 
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
 
154
  ## Technical Specifications [optional]
155
 
156
  ### Model Architecture and Objective
157
 
158
- [More Information Needed]
 
159
 
160
  ### Compute Infrastructure
161
 
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
 
172
  ## Citation [optional]
173
 
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
 
194
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
195
 
196
- [More Information Needed]
197
 
198
- ## Model Card Contact
199
 
200
- [More Information Needed]
 
1
+
2
  ---
3
  library_name: transformers
4
  tags:
5
  - unsloth
6
  ---
7
 
8
+ # Model Card for `bayrameker/threat_detection_lora`
 
 
 
9
 
10
+ This LoRA fine-tuned model is designed to identify and generate text related to various defense and security threats. It was trained on a dataset containing examples of different threat categories (e.g., cyber warfare, espionage, disinformation, etc.) in the context of defense industry news or statements.
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ - **Developed by:** [Bayram Eker (bayrameker)](https://huggingface.co/bayrameker)
17
+ - **Finetuned from model:** [unsloth/Phi-4](https://huggingface.co/unsloth/Phi-4)
18
+ - **Model type:** LoRA-based Causal Language Model (decoder-only architecture)
19
+ - **Language(s) (NLP):** Primarily Turkish (and some English content, if present in the dataset)
20
+ - **License:** *Currently unspecified* (the base model’s license terms may apply)
21
+ - **Shared by:** [Bayram Eker (bayrameker)](https://huggingface.co/bayrameker)
22
 
23
+ This model was LoRA fine-tuned with [Unsloth](https://github.com/unslothai/unsloth) on a curated dataset dealing with defense-related threats, focusing on threat type detection and short descriptive outputs.
24
 
25
+ ### Model Sources
 
 
 
 
 
 
26
 
27
+ - **Repository (Hub):** [bayrameker/threat_detection_lora](https://huggingface.co/bayrameker/threat_detection_lora)
28
+ - **Paper [optional]:** *No dedicated paper at this time*
29
+ - **Demo [optional]:** *No public demo at this time*
 
 
 
 
30
 
31
  ## Uses
32
 
33
+ This LoRA model can be used in text generation or chat-like scenarios where the user asks about potential threats in a defense/security context. The model is capable of producing threat categories (e.g., espionage, cyber-attack, disinformation) and short descriptions.
34
 
35
  ### Direct Use
36
 
37
+ - **Chatbot / QA assistant** for defense-related threat descriptions.
38
+ - **Text generation** around security/defense news, or summarizing threats.
 
39
 
40
+ ### Downstream Use
41
 
42
+ - **Threat classification** or **risk analysis** tools, where the model’s generated categories are used as a starting point for further classification pipelines.
 
 
43
 
44
  ### Out-of-Scope Use
45
 
46
+ - Detailed, real-time intelligence or geostrategic analytics (the model does not guarantee factual correctness or current data).
47
+ - Legal, financial, or medical advice.
48
+ - Any domain requiring certified, high-stakes decision-making where incorrect predictions could cause harm.
49
 
50
  ## Bias, Risks, and Limitations
51
 
52
+ This model was fine-tuned on a relatively specialized dataset focusing on defense-related threats. It may exhibit the following limitations:
53
 
54
+ - **Hallucination**: The model may invent or exaggerate threat types not present in the data.
55
+ - **Cultural / Geographic Bias**: The training data may be more skewed towards certain regions or conflicts.
56
+ - **Incomplete or Outdated Info**: The model’s knowledge cutoff depends on the base model and fine-tuning data; it may not reflect the latest developments in defense technology or geopolitics.
57
 
58
  ### Recommendations
59
 
60
+ - Do not rely solely on model outputs for critical defense or security-related decisions.
61
+ - Cross-verify the model’s threat descriptions with domain experts.
62
+ - Be mindful of potential misinterpretations when using the model’s outputs in real-world settings.
63
 
64
  ## How to Get Started with the Model
65
 
66
+ Below is a sample code snippet to load and run inference:
67
 
68
+ ```python
69
+ from unsloth import FastLanguageModel
70
+ from unsloth.chat_templates import get_chat_template
71
 
72
+ # Load LoRA fine-tuned model from Hugging Face
73
+ model_name = "bayrameker/threat_detection_lora"
74
 
75
+ model, tokenizer = FastLanguageModel.from_pretrained(
76
+ model_name=model_name,
77
+ device_map="auto"
78
+ )
79
 
80
+ tokenizer = get_chat_template(
81
+ tokenizer,
82
+ chat_template="phi-4",
83
+ )
84
 
85
+ FastLanguageModel.for_inference(model)
86
 
87
+ messages = [
88
+ {"role": "user", "content": "Rusya ile ilgili tehditler"}
89
+ ]
90
 
91
+ inputs = tokenizer.apply_chat_template(
92
+ messages,
93
+ tokenize=True,
94
+ add_generation_prompt=True,
95
+ return_tensors="pt",
96
+ ).to(model.device)
97
 
98
+ outputs = model.generate(
99
+ input_ids=inputs,
100
+ max_new_tokens=256,
101
+ temperature=0.8,
102
+ min_p=0.2,
103
+ use_cache=True,
104
+ )
105
 
106
+ generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=False)[0]
107
+ print(generated_text)
108
+ ```
109
 
110
+ ## Training Details
111
 
112
+ ### Training Data
113
 
114
+ - The dataset used is from [**bayrameker/threat-detection**](https://huggingface.co/datasets/bayrameker/threat-detection), which contains defense-related short texts (e.g., new weapon systems, geopolitical statements) paired with their potential threats (cyber warfare, espionage, etc.).
115
+ - The data is primarily in Turkish, with possible bilingual or English content in some entries.
116
 
117
+ ### Training Procedure
118
 
119
+ - **LoRA Fine-Tuning Framework**: [Unsloth](https://github.com/unslothai/unsloth)
120
+ - **Base Model**: [unsloth/Phi-4](https://huggingface.co/unsloth/Phi-4)
121
+ - **Hyperparameters**:
122
+ - LoRA rank (`r`): 16
123
+ - LoRA `lora_alpha`: 16
124
+ - `lora_dropout`: 0
125
+ - Mixed-precision: typically bf16 or fp16 (depending on GPU)
126
+ - Learning Rate (LR): ~2e-4
127
+ - Batch Size / Gradient Accum Steps: Varied based on GPU memory
128
+ - Steps/Epochs: Adjusted for the dataset size
129
 
130
+ #### Speeds, Sizes, Times [optional]
131
+ - Dependent on GPU hardware (e.g., NVIDIA A100 or similar).
132
+ - No explicit throughput or wall-clock times reported.
133
 
134
  ## Evaluation
135
 
 
 
136
  ### Testing Data, Factors & Metrics
137
 
138
+ - **Testing Data**: The same or a subset of [bayrameker/threat-detection](https://huggingface.co/datasets/bayrameker/threat-detection) can be used for evaluation.
139
+ - **Factors**: The content includes different security contexts, focusing on “threat_type” variety.
140
+ - **Metrics**: Primarily manual or qualitative evaluation (threat categories are short text). A formal metric (accuracy/F1) could be used if the data had clear gold-standard labels.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
142
  ### Results
143
 
144
+ Qualitative evaluation shows the model can produce short paragraphs describing potential threats related to a user’s prompt (e.g., “Rusya ile ilgili tehditler”). Exact numeric scores are not reported.
 
 
 
 
145
 
146
  ## Model Examination [optional]
147
 
148
+ No specific interpretability tools were used or documented.
 
 
149
 
150
  ## Environmental Impact
151
 
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+ Exact figures not provided.
 
 
 
 
 
 
 
154
 
155
  ## Technical Specifications [optional]
156
 
157
  ### Model Architecture and Objective
158
 
159
+ - A LoRA adaptation on a GPT-style language model (decoder-only).
160
+ - Objective: Next-token prediction, guided by conversation templates (SFT — Supervised Fine Tuning).
161
 
162
  ### Compute Infrastructure
163
 
164
+ - **Hardware**: GPU (e.g., NVIDIA A100, or similar).
165
+ - **Software**: PyTorch, transformers, accelerate, [Unsloth library](https://github.com/unslothai/unsloth).
 
 
 
 
 
 
 
166
 
167
  ## Citation [optional]
168
 
169
+ If you use or modify this model, please credit the base model (Phi-4 by Unsloth) and the fine-tuning repository.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
+ ```bibtex
172
+ @misc{bayramekerThreatDetectionLoRA,
173
+ author = {Eker, Bayram},
174
+ title = {{Threat Detection LoRA}},
175
+ howpublished = {\url{https://huggingface.co/bayrameker/threat_detection_lora}},
176
+ year={2023}
177
+ }
178
+ ```
179
 
180
+ ## Model Card Authors
181
 
182
+ - [Bayram Eker (bayrameker)](https://huggingface.co/bayrameker)
183