File size: 2,019 Bytes
98f7848
 
2efeef0
 
 
 
98f7848
 
2efeef0
 
 
 
98f7848
 
 
 
 
861d48d
2efeef0
 
861d48d
98f7848
2efeef0
4c8dafb
8c066d5
4c8dafb
98f7848
 
 
 
 
 
 
 
 
 
 
 
66fc4b8
98f7848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: mit
datasets:
- LemeExploreNau/VeraCruz
language:
- pt
metrics:
- accuracy
tags:
- Portuguese
- Brazilian
- Language Classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# PeroVazPT-BR Classifier

## Model Description
The PeroVazPT-BR Classifier is designed to classify text between European Portuguese (PT) and Brazilian Portuguese (BR).

This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the [VeraCruz Dataset](https://huggingface.co/datasets/LemeExploreNau/VeraCruz).
The model was trained on the [VeraCruz Dataset](https://huggingface.co/datasets/LemeExploreNau/VeraCruz), a collection of text samples from both languages. The model was trained on a total of 500,000 examples, a evenly split between European Portuguese and Brazilian Portuguese, ensuring a balanced representation of both language variants.

It achieves the following results on an evaluation set of 50,000 examples:
- Loss: 0.1791
- Accuracy: 0.9461

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4772        | 0.06  | 500  | 0.2501          | 0.9080   |
| 0.3412        | 0.13  | 1000 | 0.2275          | 0.9135   |
| 0.3122        | 0.19  | 1500 | 0.2578          | 0.9014   |
| 0.2975        | 0.25  | 2000 | 0.1992          | 0.9396   |
| 0.2877        | 0.31  | 2500 | 0.1791          | 0.9461   |

### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2