# Copyright 2023 Baichuan Inc. All Rights Reserved. # # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch omni model.""" import os import time import json import math import numpy as np from typing import List, Optional, Tuple, Union, Any from threading import Thread from easydict import EasyDict import torch import torch.distributed import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from torch.nn import functional as F import torch.distributed as dist from transformers import PreTrainedModel from transformers.activations import ACT2FN from dataclasses import dataclass from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput from transformers.generation.utils import GenerationConfig from transformers.utils import logging # import for dynamic import not used in this file from .vector_quantize import VectorQuantize, EuclideanCodebook from .matcha_components import ( SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D, ) from .matcha_transformer import BasicTransformerBlock from .flow_matching import ConditionalDecoder, ConditionalCFM from .configuration_omni import OmniConfig from .audio_modeling_omni import (RMSNorm, OmniAudioEncoder, OmniAudioDecoder, OmniAudioVQBridgeTokenizer, OmniAudioFlowMatchingDecoder) from .visual_modeling_omni import OmniVisualEncoder, OmniVisualBridge from .processor_omni import OmniMMProcessor # support model path contain point(.) try: # step1: copy relative imports to transformers_modules from .generation_utils import build_chat_input, TextIterStreamer from .sequence_parallel_utils import ( create_attention_layer, get_sequence_parallel_size, get_sequence_parallel_chunk, ) except ModuleNotFoundError: # step2: direct import from transformers_modules try: # bypass check_imports failure import sys sys.path.append(os.path.dirname(__file__)) from generation_utils import build_chat_input, TextIterStreamer from sequence_parallel_utils import ( create_attention_layer, get_sequence_parallel_size, get_sequence_parallel_chunk, ) except Exception: raise logger = logging.get_logger(__name__) def get_slopes(n): def get_slopes_power_of_2(n): start = (2 ** (-2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio ** i for i in range(n)] if math.log2(n).is_integer(): return get_slopes_power_of_2( n) # In the paper, we only train models that have 2^a heads for some a. This function has else: # some good properties that only occur when the input is a power of 2. To maintain that even closest_power_of_2 = 2 ** math.floor( math.log2(n)) # when the number of heads is not a power of 2, we use this workaround. return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][ :n - closest_power_of_2] class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=5e6, device=None): super().__init__() # 修复RePE初始化精度问题 https://zhuanlan.zhihu.com/p/678963442 # DeepSpeed 会 Hack torch.arange 强制在 GPU 上运行,这里使用原生的 torch.arange try: import deepspeed self.arange = deepspeed.runtime.zero.partition_parameters._orig_torch_arange except: self.arange = torch.arange self.inv_freq = 1.0 / (base ** (self.arange(0, dim, 2).float().to(device) / dim)) self.max_seq_len_cached = max_position_embeddings t = self.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32) self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. if seq_len > self.max_seq_len_cached: self.max_seq_len_cached = seq_len t = self.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device) self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device) return ( self.cos_cached[:, :, :seq_len, ...].to(torch.float32).to(x.device), self.sin_cached[:, :, :seq_len, ...].to(torch.float32).to(x.device), ) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids): cos = cos_.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin_.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin) k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin) return q_embed.to(q.dtype), k_embed.to(k.dtype) class MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.act_fn = ACT2FN[hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: OmniConfig, is_sparse=False): super().__init__() self.config = config self.position_embedding_type = config.position_embedding_type.lower() self.num_kv_heads = config.num_key_value_heads self.head_dim = config.head_dim self.hidden_size = config.num_attention_heads * self.head_dim self.hidden_kv_size = self.num_kv_heads * self.head_dim if is_sparse: self.num_heads = config.sparse_attention_heads assert self.num_kv_heads == config.num_attention_heads self.W_pack = nn.Linear(self.hidden_size, 3 * self.num_heads * self.head_dim, bias=config.attention_qkv_bias) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) else: self.num_heads = config.num_attention_heads if self.config.attention_qkv_pack: self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + self.hidden_kv_size * 2, bias=config.attention_qkv_bias) else: self.q_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=config.attention_qkv_bias) self.k_proj = nn.Linear(config.hidden_size, self.hidden_kv_size, bias=config.attention_qkv_bias) self.v_proj = nn.Linear(config.hidden_size, self.hidden_kv_size, bias=config.attention_qkv_bias) self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) if self.position_embedding_type == 'rope': self.rotary_emb = RotaryEmbedding( dim=self.head_dim, max_position_embeddings=config.max_position_embeddings, base=config.get_rotary_base() ) elif self.position_embedding_type == 'alibi': self.alibi_slopes = get_slopes(self.num_heads) self.attention = create_attention_layer(self.hidden_size, self.num_heads, self.head_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def _repeat_kv(self, hidden_states: torch.Tensor, num_heads: int) -> torch.Tensor: assert hidden_states.size(1) <= num_heads and num_heads % hidden_states.size(1) == 0 return repeat_kv(hidden_states, num_heads // hidden_states.size(1)) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, seqlens: Optional[torch.IntTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len = hidden_states.shape[:2] if self.config.attention_qkv_pack: proj = self.W_pack(hidden_states) query_states, key_states, value_states = proj.split([self.hidden_size, self.hidden_kv_size, self.hidden_kv_size], dim=-1) else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # (B, S, hidden_size) -> (B, num_heads, S, head_size) query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) # (B, S, hidden_size) -> (B, num_kv_heads, S, head_size) key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] if self.position_embedding_type == 'rope': max_position = position_ids.max().item()+1 if position_ids is not None else kv_seq_len * get_sequence_parallel_size() cos, sin = self.rotary_emb(value_states, seq_len=max_position) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, get_sequence_parallel_chunk(position_ids) ) if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # repeat k/v heads if n_kv_heads < n_heads key_states = self._repeat_kv(key_states, query_states.size(1)) value_states = self._repeat_kv(value_states, query_states.size(1)) if seqlens is not None: seqlens = seqlens.to(dtype=torch.int32) max_seqlen = (seqlens[1:] - seqlens[:-1]).max().item() if self.position_embedding_type == 'alibi': alibi_slopes = torch.tensor(self.alibi_slopes, dtype=torch.float32).to(query_states.device) else: alibi_slopes = None attn_output = self.attention( query_states, key_states, value_states, seqlens, seqlens, max_seqlen, max_seqlen, causal=True, alibi_slopes=alibi_slopes, use_flash=True) else: attn_output = self.attention( query_states, key_states, value_states, attn_mask=attention_mask, use_flash=False) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value class DecoderLayer(nn.Module): def __init__(self, config: OmniConfig, is_sparse=False): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Attention(config=config, is_sparse=is_sparse) self.mlp = MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, seqlens: Optional[torch.IntTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, group_index=None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, seqlens=seqlens, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class OmniPreTrainedModel(PreTrainedModel): config_class = OmniConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["DecoderLayer"] _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or isinstance(module, nn.ConvTranspose1d): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm) or isinstance(module, nn.GroupNorm): module.weight.data.fill_(1.0) module.bias.data.zero_() elif isinstance(module, RMSNorm): module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, OmniModel): module.gradient_checkpointing = value @dataclass class OmniModelOutputWithPast(BaseModelOutputWithPast): audio_encoder_ret: Optional[Any] = None audio_decoder_ret: Optional[Any] = None class OmniModel(OmniPreTrainedModel): def __init__(self, config: OmniConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size if config.visual_config.enable: self.visual_model = OmniVisualEncoder(config.visual_config) self.visual_bridge_model = OmniVisualBridge(config.visual_config) if config.video_config.enable and not config.visual_config.enable: # in case 没有visual_config而只有video_config self.visual_model = OmniVisualEncoder(config.video_config) self.visual_bridge_model = OmniVisualBridge(config.video_config) self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList([ DecoderLayer(config, is_sparse=layer_idx in config.sparse_attention_layers) for layer_idx in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.audio_embed_layers = nn.ModuleList([ nn.Embedding(codedim + 1, config.hidden_size) for i, codedim in enumerate(config.audio_config.vq_config.codebook_sizes) ]) self.gradient_checkpointing = True # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @torch.no_grad() def get_multimodal_mask(self, input_ids, pad_token_id, special_token_list): ''' 获取任意模态的特殊mask,包含以下 1. pad mask 表示文本中图像/语音/视频模态提前留出的token位置 2. special token mask 特殊token 例如对理解模型 不需要next token prediction 3. embedding mask / lm_head mask 标记出特殊token在embedding中的mask ''' pad_mask = torch.eq(input_ids, pad_token_id) sp_mask = torch.zeros_like(input_ids, dtype=torch.bool) lm_head_mask = torch.zeros([self.config.vocab_size, 1], dtype=torch.bool) for sp_id in special_token_list: sp_mask = torch.logical_or(sp_mask, torch.eq(input_ids, sp_id)) lm_head_mask[sp_id, 0] = True return pad_mask, sp_mask, lm_head_mask def get_multimodal_embed( self, input_ids, text_embedding, # 1. self.embed_tokens(input_ids) 2. 其他模态结果 multimodal_embed, pad_token_id, fake_input, group_index=None, # 某种模态的编号 ): pad_mask, sp_mask, _ = self.get_multimodal_mask(input_ids, pad_token_id, self.config.multimodal_special_token_list) if not self.training: # 推理支持auto map 把多模态模块输出和input_ids 统一到一个device multimodal_embed = multimodal_embed.to(input_ids.device) if not fake_input: # 检查多模态token 和 pad mask数量一致 (不正确的截断会导致该问题) assert pad_mask.sum() == multimodal_embed.shape[0] else: assert pad_mask.sum() <= 0 # 合并 当前模态embeddings 和text embeddings input_ids = torch.where(pad_mask, torch.cumsum(pad_mask.view(-1).to(input_ids), dim=0).view(input_ids.shape)-1, input_ids) text_embedding = (1 - pad_mask.to(text_embedding)).unsqueeze(-1) * text_embedding # pad token位置填0 multimodal_embedding = torch.embedding(multimodal_embed, input_ids * pad_mask) # 非 pad token 位置填idx=0位置结果 multimodal_embedding = pad_mask.to(multimodal_embedding).unsqueeze(-1) * multimodal_embedding # 非pad token 位置填0 final_embedding = multimodal_embedding.to(text_embedding) + text_embedding if group_index is None: group_index = pad_mask.to(torch.int32) else: current_index = torch.max(group_index) + 1 group_index += pad_mask.to(torch.int32) * current_index # 假设模态无重叠 return final_embedding, group_index def get_visual_embed( self, input_ids, text_embedding, # 1. self.embed_tokens(input_ids) 2. 其他模态结果 images = None, patch_nums = None, images_grid = None, videos = None, videos_patch_nums = None, videos_grid = None, group_index = None, # 某种模态的编号 ): if images is None or len(images) <= 0: images, images_grid, patch_nums = self.visual_model.fake_input(input_ids.device) image_fake_input = True else: image_fake_input = False if videos is None or len(videos) <= 0 : videos, videos_grid, videos_patch_nums = self.visual_model.fake_input(input_ids.device) video_fake_input = True else: video_fake_input = False visual_input = images + videos visual_grid = images_grid + videos_grid visual_input = torch.cat(visual_input, dim=0) visual_grid = torch.tensor(np.array(visual_grid)) visual_embed = self.visual_model(visual_input, grid_thw=visual_grid) visual_embed = self.visual_bridge_model(visual_embed) assert sum(patch_nums) + sum(videos_patch_nums) == visual_embed.shape[0] images_embed = visual_embed[:sum(patch_nums)] videos_embed = visual_embed[sum(patch_nums):] final_embedding, group_index = self.get_multimodal_embed(input_ids, text_embedding, images_embed, self.config.visual_config.image_pad_token_id, image_fake_input, group_index=group_index) final_embedding, group_index = self.get_multimodal_embed(input_ids, final_embedding, videos_embed, self.config.video_config.video_place_token_id, video_fake_input, group_index=group_index) return final_embedding, group_index @torch.no_grad() def audio_fake_input(self, device): return torch.zeros(5, len(self.config.audio_config.vq_config.codebook_sizes), dtype=torch.int32, device=device) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, seqlens: Optional[torch.IntTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, audios_tokens: Optional[List|torch.Tensor] = None, # 音频token bs*seqlen*vq_num images: Optional[List|torch.Tensor] = None, patch_nums: Optional[torch.Tensor] = None, images_grid: Optional[List|torch.Tensor] = None, videos: Optional[List|torch.Tensor] = None, videos_patch_nums: Optional[torch.Tensor] = None, videos_grid: Optional[List|torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, OmniModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = True if (return_dict is not None or self.training) else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() group_index, audio_decoder_ret = None, None if inputs_embeds is None: sp_input_ids = get_sequence_parallel_chunk(input_ids) inputs_embeds = self.embed_tokens(sp_input_ids) if audios_tokens is None or len(audios_tokens) <= 0 : audios_tokens = torch.zeros(5, len(self.config.audio_config.vq_config.codebook_sizes), dtype=torch.int32, device=input_ids.device) # a fake input fake_input = True else: fake_input = False for i, audio_emb_layer in enumerate(self.audio_embed_layers): if i==0: audio_embs = audio_emb_layer(audios_tokens[..., i]) else: audio_embs += audio_emb_layer(audios_tokens[..., i]) inputs_embeds, group_index = self.get_multimodal_embed(sp_input_ids, inputs_embeds, audio_embs, self.config.audio_config.audio_pad_token_id, fake_input, group_index=group_index) if self.config.visual_config.enable or self.config.video_config.enable: inputs_embeds, group_index = self.get_visual_embed(sp_input_ids, inputs_embeds, images, patch_nums, images_grid, videos, videos_patch_nums, videos_grid, group_index=group_index) # 注意更新group index if seqlens is not None and seqlens.ndim == 2: cu_seqlens = [] offset, seqlen = 0, seqlens.size(1) for lens in seqlens: cu_seqlens.append(offset) cu_seqlens.extend((lens[(lens > 0) & (lens < seqlen)] + offset).tolist()) offset += seqlen cu_seqlens.append(offset) seqlens = torch.tensor(cu_seqlens, dtype=seqlens.dtype, device=seqlens.device) elif seqlens is None and self.training: seqlens = torch.arange( end=input_ids.size(0) + 1, dtype=torch.int32, device=input_ids.device ) * input_ids.size(1) if seqlens is not None: attention_mask = None # unset attention_mask to save memory if seqlens is None and attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) if attention_mask is not None: attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) # embed positions hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, False, group_index) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, seqlens, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, seqlens=seqlens, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, group_index=group_index, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class NormHead(nn.Module): def __init__(self, hidden_size, vocab_size, bias=False): super().__init__() self.hidden_size = hidden_size self.vocab_size = vocab_size self.weight = nn.Parameter(torch.empty((self.vocab_size, self.hidden_size))) nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states, mask=None): norm_weight = nn.functional.normalize(self.weight) if mask is not None: mask = mask.to(norm_weight) norm_weight = norm_weight * mask + (1 - mask) * norm_weight.detach() return nn.functional.linear(hidden_states, norm_weight) def extra_repr(self) -> str: return f'in_features={self.hidden_size}, out_features={self.vocab_size}' @dataclass class OmniMMCausalLMOutputWithPast(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None audios_emb_for_infer: Optional[torch.FloatTensor] = None # 用于audio head 推理的 embeddings class CasualDepthTransformerLayer(nn.Module): def __init__(self, config, depth): super().__init__() self.config = config embed_size = config.hidden_size assert embed_size % 128 == 0 num_heads = embed_size // 128 self.self_attention = nn.MultiheadAttention(embed_dim=embed_size, num_heads=num_heads,batch_first=True) self.layernorm1 = RMSNorm(embed_size) self.layernorm2 = RMSNorm(embed_size) self.linear1 = nn.Linear(embed_size * depth, 2 * embed_size) self.linear2 = nn.Linear(2 * embed_size * depth, embed_size) def forward(self, x): seq_len = x.size(1) res = x x = self.layernorm1(x) src_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1).bool().to(x.device) _x, _ = self.self_attention(x, x, x, is_causal=True, attn_mask=src_mask) res = _x + res # (bs, sl, d) res = self.layernorm2(res) x = torch.einsum('bld,tld->blt', res, torch.reshape(self.linear1.weight, (2 * self.config.hidden_size, -1, self.config.hidden_size))) x = torch.nn.functional.gelu(x) x = torch.einsum('blt,dlt->bld', x, torch.reshape(self.linear2.weight, (self.config.hidden_size, -1, 2 * self.config.hidden_size))) return res + x class OmniAudioHead(nn.Module): def __init__(self, config): super().__init__() self.config = config hidden_size = config.hidden_size self.transformer_layers = nn.ModuleList([ CasualDepthTransformerLayer(config, len(config.audio_config.vq_config.codebook_sizes)) for _ in range(config.audio_config.audio_head_transformer_layers) ]) self.headnorm = RMSNorm(hidden_size) self.heads = nn.ModuleList([ nn.Linear(hidden_size, vq_size+1) for vq_size in config.audio_config.vq_config.codebook_sizes ]) self.gradient_checkpointing = True def forward(self, x, audios_tokens, audio_emb_layers): cumsum_audio_embed = torch.stack([ audio_emb_layers[i](audios_tokens[..., i]) for i, vq_size in enumerate(self.config.audio_config.vq_config.codebook_sizes[:-1]) ], dim=1) cumsum_audio_embed = torch.cumsum(cumsum_audio_embed, dim=1) # (bs, depth-1, d) hidden_states = torch.concat([x.reshape(-1, 1, self.config.hidden_size), cumsum_audio_embed], dim=1) # (bs, depth, d) assert hidden_states.size(1) == len(self.config.audio_config.vq_config.codebook_sizes) for i, tlayer in enumerate(self.transformer_layers): hidden_states = tlayer(hidden_states,) hidden_states = self.headnorm(hidden_states) logits = [head(hidden_states[:,i]) for i, head in enumerate(self.heads)] return logits class OmniForCausalLM(OmniPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.model = OmniModel(config) self.audio_tokenizer = OmniAudioTokenizer(config) self.audio_head = OmniAudioHead(config) if config.use_norm_head: self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False) else: self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() @property def main_device(self): return self.lm_head.weight.device def bind_processor(self, tokenizer, **kwargs): self.processor = OmniMMProcessor( tokenizer=tokenizer, config=self.config, **kwargs, ) return self.processor def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, seqlens: Optional[torch.IntTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, audios: Optional[List|torch.Tensor] = None, audios_tokens: Optional[List|torch.Tensor] = None, encoder_length: Optional[torch.Tensor] = None, bridge_length: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, patch_nums: Optional[torch.Tensor] = None, images_grid: Optional[torch.Tensor] = None, videos: Optional[torch.Tensor] = None, videos_patch_nums: Optional[torch.Tensor] = None, videos_grid: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if audios_tokens is not None: assert isinstance(audios_tokens, torch.Tensor) else: if audios is None or len(audios) == 0: audios_tokens = None else: audios_tokens = self.audio_tokenizer(audios,encoder_length,bridge_length) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, seqlens=seqlens, past_key_values=past_key_values, inputs_embeds=inputs_embeds, audios_tokens=audios_tokens, images=images, patch_nums=patch_nums, images_grid=images_grid, videos=videos, videos_patch_nums=videos_patch_nums, videos_grid=videos_grid, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs.last_hidden_state audios_emb_for_infer = hidden_states[:,-1,:] logits = self.lm_head(hidden_states) return OmniMMCausalLMOutputWithPast( logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, audios_emb_for_infer=audios_emb_for_infer ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values: input_ids = input_ids[:, past_key_values[0][0].shape[-2]:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) # position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, past_key_values[0][0].shape[-2]:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} elif past_key_values is not None: model_inputs = {"input_ids": input_ids} else: model_inputs = {"input_ids": input_ids, "audios": kwargs.get("audios", None), "encoder_length": kwargs.get("encoder_length", None), "bridge_length": kwargs.get("bridge_length", None), "audios_tokens": kwargs.get("audios_tokens", None), "images": kwargs.get("images", None), "videos": kwargs.get("videos", None) } model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "images_grid": kwargs.get("images_grid"), "videos_grid": kwargs.get("videos_grid"), "patch_nums": kwargs.get("patch_nums"), "videos_patch_nums": kwargs.get("videos_patch_nums"), } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past def chat(self, tokenizer, messages: List[dict], stream=False, generation_config: Optional[GenerationConfig]=None): generation_config = generation_config or self.generation_config input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens) if stream: streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) Thread(target=self.generate, kwargs=dict( inputs=input_ids, streamer=streamer, generation_config=generation_config, )).start() return streamer else: outputs = self.generate(input_ids, generation_config=generation_config) response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True) return response class OmniAudioTokenizer(OmniPreTrainedModel): """ Construct an audio tokenizer and decoder. """ def __init__(self, config: OmniConfig): super().__init__(config) self.padding_idx = None self.vocab_size = config.vocab_size self.training = False self.eval() self.audio_model = OmniAudioEncoder(config.audio_config) self.audio_bridge_model = OmniAudioVQBridgeTokenizer(config) if config.vocoder_config.enable: self.audio_decoder = OmniAudioDecoder(config) if config.flow_matching_config.enable: self.audio_flow_matching_decoder = OmniAudioFlowMatchingDecoder(config) def encode(self, x, encoder_length: Optional[torch.Tensor] = None, bridge_length: Optional[torch.Tensor] = None): audio_emb = self.audio_model(x, encoder_length) audios_tokens = self.audio_bridge_model(audio_emb, bridge_length) return audios_tokens def decode(self, audio_code_ids, bridge_length: Optional[torch.Tensor] = None): assert self.config.vocoder_config.enable, "Vocoder is not enabled in config." audio_emb = self.audio_bridge_model.decode(audio_code_ids) audio_dec = self.audio_decoder( audio_emb.to(next(self.audio_decoder.parameters())), bridge_length ) if self.config.flow_matching_config.enable: if self.config.flow_matching_config.use_hidden_states_before_dconv2: hidden_states, hidden_states_length = ( self.audio_flow_matching_decoder.unpack_hidden_states( audio_dec.hidden_states_before_dconv2, audio_dec.output_length_before_dconv2, ) ) audio_flow_matching_decoder_ret = self.audio_flow_matching_decoder( hidden_states, hidden_states_length ) else: audio_flow_matching_decoder_ret = self.audio_flow_matching_decoder( audio_dec.refined_mel, audio_dec.mel_length ) return audio_flow_matching_decoder_ret else: return audio_dec @torch.no_grad() def forward(self, audios, encoder_length: Optional[torch.Tensor] = None, bridge_length: Optional[torch.Tensor] = None): self.eval() audios_tokens = self.encode(audios, encoder_length, bridge_length) return audios_tokens