# Modified from Matcha-TTS https://github.com/shivammehta25/Matcha-TTS """ MIT License Copyright (c) 2023 Shivam Mehta Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from diffusers.models.activations import get_activation class SinusoidalPosEmb(torch.nn.Module): def __init__(self, dim): super().__init__() self.dim = dim assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even" def forward(self, x, scale=1000): if x.ndim < 1: x = x.unsqueeze(0) device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class Block1D(torch.nn.Module): def __init__(self, dim, dim_out, groups=8): super().__init__() self.block = torch.nn.Sequential( torch.nn.Conv1d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), nn.Mish(), ) def forward(self, x, mask): output = self.block(x * mask) return output * mask class ResnetBlock1D(torch.nn.Module): def __init__(self, dim, dim_out, time_emb_dim, groups=8): super().__init__() self.mlp = torch.nn.Sequential( nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out) ) self.block1 = Block1D(dim, dim_out, groups=groups) self.block2 = Block1D(dim_out, dim_out, groups=groups) self.res_conv = torch.nn.Conv1d(dim, dim_out, 1) def forward(self, x, mask, time_emb): h = self.block1(x, mask) h += self.mlp(time_emb).unsqueeze(-1) h = self.block2(h, mask) output = h + self.res_conv(x * mask) return output class Downsample1D(nn.Module): def __init__(self, dim): super().__init__() self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1) def forward(self, x): return self.conv(x) class TimestepEmbedding(nn.Module): def __init__( self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None, post_act_fn: Optional[str] = None, cond_proj_dim=None, ): super().__init__() self.linear_1 = nn.Linear(in_channels, time_embed_dim) if cond_proj_dim is not None: self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) else: self.cond_proj = None self.act = get_activation(act_fn) if out_dim is not None: time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) if post_act_fn is None: self.post_act = None else: self.post_act = get_activation(post_act_fn) def forward(self, sample, condition=None): if condition is not None: sample = sample + self.cond_proj(condition) sample = self.linear_1(sample) if self.act is not None: sample = self.act(sample) sample = self.linear_2(sample) if self.post_act is not None: sample = self.post_act(sample) return sample class Upsample1D(nn.Module): """A 1D upsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. use_conv_transpose (`bool`, default `False`): option to use a convolution transpose. out_channels (`int`, optional): number of output channels. Defaults to `channels`. """ def __init__( self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv", ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name self.conv = None if use_conv_transpose: self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) elif use_conv: self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) def forward(self, inputs): assert inputs.shape[1] == self.channels if self.use_conv_transpose: return self.conv(inputs) outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") if self.use_conv: outputs = self.conv(outputs) return outputs