# Copyright 2023 Baichuan Inc. All Rights Reserved. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from transformers import WhisperConfig from transformers import CLIPVisionConfig logger = logging.get_logger(__name__) class OmniConfig(PretrainedConfig): model_type = "omni" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=125696, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, sparse_attention_heads=None, sparse_attention_layers=[], head_dim=None, attention_qkv_pack=True, attention_qkv_bias=False, use_norm_head=True, hidden_act="silu", max_position_embeddings=4096, position_embedding_type="rope", initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, audio_config=None, visual_config=None, video_config=None, vocoder_config=None, flow_matching_config=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads or self.num_attention_heads self.sparse_attention_heads = sparse_attention_heads self.sparse_attention_layers = sparse_attention_layers self.head_dim = head_dim or self.hidden_size // self.num_attention_heads self.attention_qkv_pack = attention_qkv_pack self.attention_qkv_bias = attention_qkv_bias self.use_norm_head = use_norm_head self.hidden_act = hidden_act self.position_embedding_type = position_embedding_type self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache assert self.position_embedding_type.lower() in ("rope", "alibi") super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) if audio_config is not None: self.audio_config = WhisperConfig(**audio_config) if self.audio_config.vq_config is not None: self.audio_config.vq_config = PretrainedConfig(**self.audio_config.vq_config) if vocoder_config is not None: self.vocoder_config = WhisperConfig(**vocoder_config) if flow_matching_config is not None: self.flow_matching_config = PretrainedConfig(**flow_matching_config) self.flow_matching_config.cfm_params = PretrainedConfig(**self.flow_matching_config.cfm_params) if visual_config is not None: self.visual_config = CLIPVisionConfig(**visual_config) if video_config is not None: self.video_config = CLIPVisionConfig(**video_config) def to_diff_dict(self): data = super().to_diff_dict() data["model_type"] = self.model_type return data def get_rotary_base(self): if hasattr(self, "rotary_emb_base"): return self.rotary_emb_base else: return self.rope_theta if __name__ == '__main__': from transformers import AutoConfig config = AutoConfig.from_pretrained("./", trust_remote_code=True) print(config)