Baichuan-Omni-1d5 / vector_quantize.py
lin5547's picture
Upload folder using huggingface_hub
dd7417a verified
import torch, random
from torch.nn import functional as F
from torch import nn
import numpy as np
from torch.cuda.amp import autocast
def uniform_init(*shape):
t = torch.zeros(shape)
nn.init.kaiming_uniform_(t)
return t
def cdist(x, y):
x2 = torch.sum(x ** 2, dim=-1, keepdims=True) # (b, 1)
y2 = torch.sum(y ** 2, dim=-1).reshape(1, -1) # (1, c)
xy = torch.einsum('bd,cd->bc', x, y) * -2
return (x2 + y2 + xy).clamp(min=0).sqrt() # (b, c)
def get_sequence_mask(inputs, inputs_length):
if inputs.dim() == 3:
bsz, tgt_len, _ = inputs.size()
else:
bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length)
sequence_mask = torch.arange(0, tgt_len).to(inputs.device)
sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view(bsz, tgt_len, 1)
unpacking_index = torch.cumsum(sequence_mask.to(torch.int64).view(-1), dim=0) - 1 # 转成下标
return sequence_mask, unpacking_index
class EuclideanCodebook(nn.Module):
def __init__(
self,
dim,
codebook_size,
init_std=0.02,
):
super().__init__()
self.init_std = init_std
self.dim = dim
self.codebook_size = codebook_size
embed = uniform_init(codebook_size, dim).to(torch.float32)
self.cluster_size = nn.Parameter(torch.ones(codebook_size))
self.embed_avg = nn.Parameter(embed.clone())
self.embed = nn.Parameter(embed)
del embed
@autocast(enabled=True, dtype=torch.float32)
@torch.no_grad()
def forward(self, x):
assert(len(x.shape) == 2)
assert(x.dtype == torch.float32)
embed = self.embed.detach().to(x.device)
dist = -cdist(x, embed) # dist((bs*sl, d), (c, d)) --> (bs*sl, c)
embed_ind = dist.argmax(dim=-1)
quantize = embed[embed_ind] # (bs*sl, d)
return quantize, embed_ind, dist
class VectorQuantize(nn.Module):
def __init__(self, config, *args, **kwargs):
super().__init__(*args, **kwargs)
self.config = config
self.codebook = EuclideanCodebook(dim=config.dim, codebook_size=config.codebook_size)
def forward(self, x, input_length):
batch_size, seq_len, _ = x.shape
mask, unpacking_index = get_sequence_mask(x, input_length)
if x.dtype != torch.float32:
x = x.to(torch.float32)
x = torch.masked_select(x, mask).reshape(-1, self.config.dim) # (bs*sl?, d)
quantize, embed_ind, _ = self.codebook(x)
quantize = torch.index_select(quantize, 0, unpacking_index).view(batch_size, seq_len, self.config.dim)
quantize = torch.where(mask, quantize, 0)
embed_ind = torch.index_select(embed_ind.reshape(-1, 1), 0, unpacking_index).view(batch_size, seq_len, 1)
embed_ind = torch.where(mask, embed_ind, -1).squeeze()
return quantize, embed_ind
def get_output_from_indices(self, indices):
return self.codebook.embed[indices]