|
|
|
""" |
|
MIT License |
|
|
|
Copyright (c) 2023 Shivam Mehta |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
of this software and associated documentation files (the "Software"), to deal |
|
in the Software without restriction, including without limitation the rights |
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
copies of the Software, and to permit persons to whom the Software is |
|
furnished to do so, subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in all |
|
copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
SOFTWARE. |
|
""" |
|
|
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from diffusers.models.attention import ( |
|
GEGLU, |
|
GELU, |
|
AdaLayerNorm, |
|
AdaLayerNormZero, |
|
ApproximateGELU, |
|
) |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.models.lora import LoRACompatibleLinear |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
|
|
import torch.nn.functional as F |
|
from flash_attn import flash_attn_varlen_func |
|
|
|
|
|
def get_sequence_mask(inputs, inputs_length): |
|
if inputs.dim() == 3: |
|
bsz, tgt_len, _ = inputs.size() |
|
else: |
|
bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length) |
|
sequence_mask = torch.arange(0, tgt_len).to(inputs.device) |
|
sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view( |
|
bsz, tgt_len, 1 |
|
) |
|
unpacking_index = ( |
|
torch.cumsum(sequence_mask.to(torch.int64).view(-1), dim=0) - 1 |
|
) |
|
return sequence_mask, unpacking_index |
|
|
|
|
|
class OmniWhisperAttention(nn.Module): |
|
def __init__(self, embed_dim, num_heads, causal=False): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True) |
|
|
|
self.causal = causal |
|
|
|
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor): |
|
bsz, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view( |
|
bsz, self.num_heads, self.head_dim |
|
) |
|
key_states = self.k_proj(hidden_states).view(bsz, self.num_heads, self.head_dim) |
|
value_states = self.v_proj(hidden_states).view( |
|
bsz, self.num_heads, self.head_dim |
|
) |
|
|
|
cu_len = F.pad(torch.cumsum(seq_len, dim=0), (1, 0), "constant", 0).to( |
|
torch.int32 |
|
) |
|
max_seqlen = torch.max(seq_len).to(torch.int32).detach() |
|
attn_output = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_len, |
|
cu_len, |
|
max_seqlen, |
|
max_seqlen, |
|
causal=self.causal, |
|
) |
|
attn_output = attn_output.reshape(bsz, self.embed_dim) |
|
attn_output = self.out_proj(attn_output) |
|
return attn_output |
|
|
|
|
|
class SnakeBeta(nn.Module): |
|
""" |
|
A modified Snake function which uses separate parameters for the magnitude of the periodic components |
|
Shape: |
|
- Input: (B, C, T) |
|
- Output: (B, C, T), same shape as the input |
|
Parameters: |
|
- alpha - trainable parameter that controls frequency |
|
- beta - trainable parameter that controls magnitude |
|
References: |
|
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: |
|
https://arxiv.org/abs/2006.08195 |
|
Examples: |
|
>>> a1 = snakebeta(256) |
|
>>> x = torch.randn(256) |
|
>>> x = a1(x) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
out_features, |
|
alpha=1.0, |
|
alpha_trainable=True, |
|
alpha_logscale=True, |
|
): |
|
""" |
|
Initialization. |
|
INPUT: |
|
- in_features: shape of the input |
|
- alpha - trainable parameter that controls frequency |
|
- beta - trainable parameter that controls magnitude |
|
alpha is initialized to 1 by default, higher values = higher-frequency. |
|
beta is initialized to 1 by default, higher values = higher-magnitude. |
|
alpha will be trained along with the rest of your model. |
|
""" |
|
super().__init__() |
|
self.in_features = ( |
|
out_features if isinstance(out_features, list) else [out_features] |
|
) |
|
self.proj = LoRACompatibleLinear(in_features, out_features) |
|
|
|
|
|
self.alpha_logscale = alpha_logscale |
|
if self.alpha_logscale: |
|
self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha) |
|
self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha) |
|
else: |
|
self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha) |
|
self.beta = nn.Parameter(torch.ones(self.in_features) * alpha) |
|
|
|
self.alpha.requires_grad = alpha_trainable |
|
self.beta.requires_grad = alpha_trainable |
|
|
|
self.no_div_by_zero = 0.000000001 |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the function. |
|
Applies the function to the input elementwise. |
|
SnakeBeta ∶= x + 1/b * sin^2 (xa) |
|
""" |
|
x = self.proj(x) |
|
if self.alpha_logscale: |
|
alpha = torch.exp(self.alpha) |
|
beta = torch.exp(self.beta) |
|
else: |
|
alpha = self.alpha |
|
beta = self.beta |
|
|
|
x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow( |
|
torch.sin(x * alpha), 2 |
|
) |
|
|
|
return x |
|
|
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
final_dropout: bool = False, |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim) |
|
if activation_fn == "gelu-approximate": |
|
act_fn = GELU(dim, inner_dim, approximate="tanh") |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim) |
|
elif activation_fn == "snakebeta": |
|
act_fn = SnakeBeta(dim, inner_dim) |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(LoRACompatibleLinear(inner_dim, dim_out)) |
|
|
|
if final_dropout: |
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
def forward(self, hidden_states): |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|
|
|
|
@maybe_allow_in_graph |
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
final_dropout: bool = False, |
|
use_omni_attn: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.use_omni_attn = use_omni_attn |
|
self.dim = dim |
|
|
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm_zero = ( |
|
num_embeds_ada_norm is not None |
|
) and norm_type == "ada_norm_zero" |
|
self.use_ada_layer_norm = ( |
|
num_embeds_ada_norm is not None |
|
) and norm_type == "ada_norm" |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_zero: |
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
else: |
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
|
|
if self.use_omni_attn: |
|
if only_cross_attention: |
|
raise NotImplementedError |
|
print( |
|
"Use OmniWhisperAttention with flash attention. Dropout is ignored." |
|
) |
|
self.attn1 = OmniWhisperAttention( |
|
embed_dim=dim, num_heads=num_attention_heads, causal=False |
|
) |
|
else: |
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=( |
|
cross_attention_dim if only_cross_attention else None |
|
), |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=( |
|
cross_attention_dim if not double_self_attention else None |
|
), |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
|
|
) |
|
else: |
|
self.norm2 = None |
|
self.attn2 = None |
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
) |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): |
|
|
|
self._chunk_size = chunk_size |
|
self._chunk_dim = dim |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
): |
|
|
|
bsz, tgt_len, d_model = hidden_states.shape |
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
else: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
cross_attention_kwargs = ( |
|
cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
) |
|
|
|
if self.use_omni_attn: |
|
seq_len = attention_mask[:, 0, :].float().long().sum(dim=1) |
|
var_len_attention_mask, unpacking_index = get_sequence_mask( |
|
norm_hidden_states, seq_len |
|
) |
|
norm_hidden_states = torch.masked_select( |
|
norm_hidden_states, var_len_attention_mask |
|
) |
|
norm_hidden_states = norm_hidden_states.view(torch.sum(seq_len), self.dim) |
|
attn_output = self.attn1(norm_hidden_states, seq_len) |
|
|
|
attn_output = torch.index_select(attn_output, 0, unpacking_index).view( |
|
bsz, tgt_len, d_model |
|
) |
|
attn_output = torch.where(var_len_attention_mask, attn_output, 0) |
|
else: |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=( |
|
encoder_hidden_states if self.only_cross_attention else None |
|
), |
|
attention_mask=( |
|
encoder_attention_mask |
|
if self.only_cross_attention |
|
else attention_mask |
|
), |
|
**cross_attention_kwargs, |
|
) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
if self.attn2 is not None: |
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm2(hidden_states) |
|
) |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = ( |
|
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
) |
|
|
|
if self._chunk_size is not None: |
|
|
|
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: |
|
raise ValueError( |
|
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." |
|
) |
|
|
|
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size |
|
ff_output = torch.cat( |
|
[ |
|
self.ff(hid_slice) |
|
for hid_slice in norm_hidden_states.chunk( |
|
num_chunks, dim=self._chunk_dim |
|
) |
|
], |
|
dim=self._chunk_dim, |
|
) |
|
else: |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
return hidden_states |
|
|