from typing import Any, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from flash_attn import flash_attn_varlen_func try: import deepspeed.comm as dist except: dist = None try: from utils import ( get_sequence_parallel_group, get_sequence_parallel_size, get_sequence_parallel_rank ) except (ModuleNotFoundError, ImportError): # 从 utils 获取seq parallel设置,import不成功默认为不开启 get_sequence_parallel_group = lambda : None get_sequence_parallel_size = lambda : 1 get_sequence_parallel_rank = lambda : 0 def single_all_to_all(input, scatter_idx, gather_idx, group): seq_world_size = dist.get_world_size(group) inp_shape = list(input.shape) inp_shape[scatter_idx] = inp_shape[scatter_idx] // seq_world_size if scatter_idx < 2: input_t = input.reshape( [seq_world_size, inp_shape[scatter_idx]] + \ inp_shape[scatter_idx + 1:] ).contiguous() else: # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! input_t = input.reshape( [-1, seq_world_size, inp_shape[scatter_idx]] + \ inp_shape[scatter_idx + 1:] ).transpose(0, 1).contiguous() output = torch.empty_like(input_t) dist.all_to_all_single(output, input_t, group=group) # if scattering the seq-dim, transpose the heads back to the original dimension # [sp_size, seq_len//sp_size, batch_size, head_num // sp_size, head_dim] --> # [seq_len//sp_size,batch_size, sp_size, head_num // sp_size, head_dim] if scatter_idx < 2: output = output.transpose(0, 1).transpose(1, 2).contiguous() return output.reshape( inp_shape[: gather_idx] + \ [inp_shape[gather_idx] * seq_world_size,] + \ inp_shape[gather_idx + 1:]).contiguous() class _SeqAllToAll(torch.autograd.Function): @staticmethod def forward(ctx: Any, group: 'dist.ProcessGroup', input: Tensor, scatter_idx: int, gather_idx: int) -> Tensor: ctx.group = group ctx.scatter_idx = scatter_idx ctx.gather_idx = gather_idx return single_all_to_all(input, scatter_idx, gather_idx, group) @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: return (None, _SeqAllToAll.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None) # import from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/sequence/layer.py # but fix some bugs for 符合训练的维度设置 class DistributedAttention(nn.Module): """Initialization. Arguments: local_attention (Module): local attention with q,k,v sequence_process_group (ProcessGroup): sequence parallel process group scatter_idx (int): scatter_idx for all2all comm gather_idx (int): gather_idx for all2all comm """ def __init__( self, local_attention: nn.Module, sequence_process_group: 'dist.ProcessGroup', scatter_idx: int = 2, gather_idx: int = 0, ) -> None: super(DistributedAttention, self).__init__() self.local_attn = local_attention self.spg = sequence_process_group self.scatter_idx = scatter_idx self.gather_idx = gather_idx def pad_attention_head(self, query: Tensor, key: Tensor, value: Tensor): # 将输入的head 维度pad到sp_size的倍数 sp_size = torch.distributed.get_world_size(self.spg) pad_size = (sp_size - query.size(1) % sp_size) % sp_size if pad_size > 0: # [bs, num_head, seq_len, head_dim] -> [bs, num_head+pad_size, seq_len, head_dim] query = torch.nn.functional.pad(query, (0,0,0,0,0,pad_size), value = 0.01) key = torch.nn.functional.pad(key, (0,0,0,0,0,pad_size), value = 0.01) value = torch.nn.functional.pad(value, (0,0,0,0,0,pad_size),value=0.0) return query, key, value def forward(self, query: Tensor, key: Tensor, value: Tensor, *args: Any, **kwargs) -> Tensor: """ forward Arguments: query (Tensor): query input to the layer [batch_size, num_head, seq_len, head_dim] key (Tensor): key input to the layer value (Tensor): value input to the layer args: other args Returns: * output (Tensor): context output """ # TODO Merge three alltoall calls into one # TODO (Reza): change the api on the megatron-deepspeed side so that we only receive all data (q,k, and v) together! # [batch_size,num_head,seq_len, head_dim ]trans to [seq_len,batch_size,num_head,head_dim] origin_num_head = query.size(1) query, key, value = self.pad_attention_head(query,key,value) query = query.transpose(1,2).transpose(0,1) key = key.transpose(1,2).transpose(0,1) value = value.transpose(1,2).transpose(0,1) #in shape : e.g., [s/p,bs,h,head_dim] query_layer = _SeqAllToAll.apply(self.spg, query, self.scatter_idx, self.gather_idx).transpose(0,1).transpose(1,2).contiguous() key_layer = _SeqAllToAll.apply(self.spg, key, self.scatter_idx, self.gather_idx).transpose(0,1).transpose(1,2).contiguous() value_layer = _SeqAllToAll.apply(self.spg, value, self.scatter_idx, self.gather_idx).transpose(0,1).transpose(1,2).contiguous() context_layer = self.local_attn(query_layer, key_layer, value_layer, *args, **kwargs) context_layer = context_layer.transpose(0,1).contiguous() # [seq_len, batch_size, num_head, head_dim] output = _SeqAllToAll.apply(self.spg, context_layer, self.gather_idx, self.scatter_idx) return output.transpose(0,1)[:,:,:origin_num_head,:] class LocalAttention(nn.Module): def __init__(self, hidden_size, num_heads, head_dim): super().__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_dim = head_dim def forward(self, q, k, v, *args, use_flash=True, **kwargs): # input q,k,v [batch_size, num_head, seq_len, head_dim] # output [batch_size, seq_len, num_head, head_dim] if use_flash: q_len, num_heads = q.shape[2], q.shape[1] q = q.transpose(1,2).reshape(-1, num_heads, self.head_dim) k = k.transpose(1,2).reshape(-1, num_heads, self.head_dim) v = v.transpose(1,2).reshape(-1, num_heads, self.head_dim) return flash_attn_varlen_func(q,k,v,*args, **kwargs).reshape(-1,q_len, num_heads, self.head_dim) else: with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False): attn_output = F.scaled_dot_product_attention( q,k,v, *args, **kwargs) attn_output = attn_output.transpose(1, 2) return attn_output def create_attention_layer(hidden_size, num_heads, head_dim): if get_sequence_parallel_group() is None: return LocalAttention(hidden_size, num_heads, head_dim) else: return DistributedAttention( local_attention=LocalAttention(hidden_size, num_heads, head_dim), sequence_process_group=get_sequence_parallel_group() ) def get_sequence_parallel_chunk(tensor, dim=1, shift=0): assert tensor.size(dim) % get_sequence_parallel_size() == 0 original_size = tensor.size(dim) if shift: tensor = tensor.split([shift, tensor.size(dim) - shift], dim=dim)[1] if get_sequence_parallel_group() is None: return tensor else: chunk_size = original_size // get_sequence_parallel_size() return tensor.split(chunk_size, dim=dim)[get_sequence_parallel_rank()]