|
|
|
""" |
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
""" |
|
|
|
from abc import ABC |
|
import torch |
|
import torch.nn.functional as F |
|
from typing import Dict, Optional |
|
|
|
import torch.nn as nn |
|
from einops import pack, rearrange, repeat |
|
from .matcha_components import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D |
|
from .matcha_transformer import BasicTransformerBlock |
|
from omegaconf import DictConfig |
|
|
|
|
|
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: |
|
assert mask.dtype == torch.bool |
|
assert dtype in [torch.float32, torch.bfloat16, torch.float16] |
|
mask = mask.to(dtype) |
|
|
|
|
|
|
|
mask = (1.0 - mask) * torch.finfo(dtype).min |
|
return mask |
|
|
|
|
|
def subsequent_chunk_mask( |
|
size: int, |
|
chunk_size: int, |
|
num_left_chunks: int = -1, |
|
device: torch.device = torch.device("cpu"), |
|
) -> torch.Tensor: |
|
"""Create mask for subsequent steps (size, size) with chunk size, |
|
this is for streaming encoder |
|
|
|
Args: |
|
size (int): size of mask |
|
chunk_size (int): size of chunk |
|
num_left_chunks (int): number of left chunks |
|
<0: use full chunk |
|
>=0: use num_left_chunks |
|
device (torch.device): "cpu" or "cuda" or torch.Tensor.device |
|
|
|
Returns: |
|
torch.Tensor: mask |
|
|
|
Examples: |
|
>>> subsequent_chunk_mask(4, 2) |
|
[[1, 1, 0, 0], |
|
[1, 1, 0, 0], |
|
[1, 1, 1, 1], |
|
[1, 1, 1, 1]] |
|
""" |
|
|
|
|
|
pos_idx = torch.arange(size, device=device) |
|
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size |
|
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1) |
|
return ret |
|
|
|
def subsequent_mask( |
|
size: int, |
|
device: torch.device = torch.device("cpu"), |
|
) -> torch.Tensor: |
|
"""Create mask for subsequent steps (size, size). |
|
|
|
This mask is used only in decoder which works in an auto-regressive mode. |
|
This means the current step could only do attention with its left steps. |
|
|
|
In encoder, fully attention is used when streaming is not necessary and |
|
the sequence is not long. In this case, no attention mask is needed. |
|
|
|
When streaming is need, chunk-based attention is used in encoder. See |
|
subsequent_chunk_mask for the chunk-based attention mask. |
|
|
|
Args: |
|
size (int): size of mask |
|
str device (str): "cpu" or "cuda" or torch.Tensor.device |
|
dtype (torch.device): result dtype |
|
|
|
Returns: |
|
torch.Tensor: mask |
|
|
|
Examples: |
|
>>> subsequent_mask(3) |
|
[[1, 0, 0], |
|
[1, 1, 0], |
|
[1, 1, 1]] |
|
""" |
|
arange = torch.arange(size, device=device) |
|
mask = arange.expand(size, size) |
|
arange = arange.unsqueeze(-1) |
|
mask = mask <= arange |
|
return mask |
|
|
|
|
|
def add_optional_chunk_mask(xs: torch.Tensor, |
|
masks: torch.Tensor, |
|
use_dynamic_chunk: bool, |
|
use_dynamic_left_chunk: bool, |
|
decoding_chunk_size: int, |
|
static_chunk_size: int, |
|
num_decoding_left_chunks: int, |
|
enable_full_context: bool = True): |
|
""" Apply optional mask for encoder. |
|
|
|
Args: |
|
xs (torch.Tensor): padded input, (B, L, D), L for max length |
|
mask (torch.Tensor): mask for xs, (B, 1, L) |
|
use_dynamic_chunk (bool): whether to use dynamic chunk or not |
|
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for |
|
training. |
|
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's |
|
0: default for training, use random dynamic chunk. |
|
<0: for decoding, use full chunk. |
|
>0: for decoding, use fixed chunk size as set. |
|
static_chunk_size (int): chunk size for static chunk training/decoding |
|
if it's greater than 0, if use_dynamic_chunk is true, |
|
this parameter will be ignored |
|
num_decoding_left_chunks: number of left chunks, this is for decoding, |
|
the chunk size is decoding_chunk_size. |
|
>=0: use num_decoding_left_chunks |
|
<0: use all left chunks |
|
enable_full_context (bool): |
|
True: chunk size is either [1, 25] or full context(max_len) |
|
False: chunk size ~ U[1, 25] |
|
|
|
Returns: |
|
torch.Tensor: chunk mask of the input xs. |
|
""" |
|
|
|
if use_dynamic_chunk: |
|
max_len = xs.size(1) |
|
if decoding_chunk_size < 0: |
|
chunk_size = max_len |
|
num_left_chunks = -1 |
|
elif decoding_chunk_size > 0: |
|
chunk_size = decoding_chunk_size |
|
num_left_chunks = num_decoding_left_chunks |
|
else: |
|
|
|
|
|
|
|
chunk_size = torch.randint(1, max_len, (1, )).item() |
|
num_left_chunks = -1 |
|
if chunk_size > max_len // 2 and enable_full_context: |
|
chunk_size = max_len |
|
else: |
|
chunk_size = chunk_size % 25 + 1 |
|
if use_dynamic_left_chunk: |
|
max_left_chunks = (max_len - 1) // chunk_size |
|
num_left_chunks = torch.randint(0, max_left_chunks, |
|
(1, )).item() |
|
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size, |
|
num_left_chunks, |
|
xs.device) |
|
chunk_masks = chunk_masks.unsqueeze(0) |
|
chunk_masks = masks & chunk_masks |
|
elif static_chunk_size > 0: |
|
num_left_chunks = num_decoding_left_chunks |
|
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size, |
|
num_left_chunks, |
|
xs.device) |
|
chunk_masks = chunk_masks.unsqueeze(0) |
|
chunk_masks = masks & chunk_masks |
|
else: |
|
chunk_masks = masks |
|
return chunk_masks |
|
|
|
|
|
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: |
|
"""Make mask tensor containing indices of padded part. |
|
|
|
See description of make_non_pad_mask. |
|
|
|
Args: |
|
lengths (torch.Tensor): Batch of lengths (B,). |
|
Returns: |
|
torch.Tensor: Mask tensor containing indices of padded part. |
|
|
|
Examples: |
|
>>> lengths = [5, 3, 2] |
|
>>> make_pad_mask(lengths) |
|
masks = [[0, 0, 0, 0 ,0], |
|
[0, 0, 0, 1, 1], |
|
[0, 0, 1, 1, 1]] |
|
""" |
|
batch_size = lengths.size(0) |
|
max_len = max_len if max_len > 0 else lengths.max().item() |
|
seq_range = torch.arange(0, |
|
max_len, |
|
dtype=torch.int64, |
|
device=lengths.device) |
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) |
|
seq_length_expand = lengths.unsqueeze(-1) |
|
mask = seq_range_expand >= seq_length_expand |
|
return mask |
|
|
|
|
|
class Transpose(torch.nn.Module): |
|
def __init__(self, dim0: int, dim1: int): |
|
super().__init__() |
|
self.dim0 = dim0 |
|
self.dim1 = dim1 |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = torch.transpose(x, self.dim0, self.dim1) |
|
return x |
|
|
|
class CausalBlock1D(Block1D): |
|
def __init__(self, dim: int, dim_out: int): |
|
super(CausalBlock1D, self).__init__(dim, dim_out) |
|
self.block = torch.nn.Sequential( |
|
CausalConv1d(dim, dim_out, 3), |
|
Transpose(1, 2), |
|
nn.LayerNorm(dim_out), |
|
Transpose(1, 2), |
|
nn.Mish(), |
|
) |
|
|
|
def forward(self, x: torch.Tensor, mask: torch.Tensor): |
|
output = self.block(x * mask) |
|
return output * mask |
|
|
|
class CausalResnetBlock1D(ResnetBlock1D): |
|
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8): |
|
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups) |
|
self.block1 = CausalBlock1D(dim, dim_out) |
|
self.block2 = CausalBlock1D(dim_out, dim_out) |
|
|
|
class CausalConv1d(torch.nn.Conv1d): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
stride: int = 1, |
|
dilation: int = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
super(CausalConv1d, self).__init__(in_channels, out_channels, |
|
kernel_size, stride, |
|
padding=0, dilation=dilation, |
|
groups=groups, bias=bias, |
|
padding_mode=padding_mode, |
|
device=device, dtype=dtype) |
|
assert stride == 1 |
|
self.causal_padding = (kernel_size - 1, 0) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = F.pad(x, self.causal_padding) |
|
x = super(CausalConv1d, self).forward(x) |
|
return x |
|
|
|
|
|
class BASECFM(torch.nn.Module, ABC): |
|
def __init__( |
|
self, |
|
n_feats, |
|
cfm_params, |
|
n_spks=1, |
|
spk_emb_dim=128, |
|
): |
|
super().__init__() |
|
self.n_feats = n_feats |
|
self.n_spks = n_spks |
|
self.spk_emb_dim = spk_emb_dim |
|
self.solver = cfm_params.solver |
|
if hasattr(cfm_params, "sigma_min"): |
|
self.sigma_min = cfm_params.sigma_min |
|
else: |
|
self.sigma_min = 1e-4 |
|
|
|
self.estimator = None |
|
|
|
@torch.inference_mode() |
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): |
|
"""Forward diffusion |
|
|
|
Args: |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
n_timesteps (int): number of diffusion steps |
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
|
|
Returns: |
|
sample: generated mel-spectrogram |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
z = torch.randn_like(mu) * temperature |
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) |
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond) |
|
|
|
def solve_euler(self, x, t_span, mu, mask, spks, cond): |
|
""" |
|
Fixed euler solver for ODEs. |
|
Args: |
|
x (torch.Tensor): random noise |
|
t_span (torch.Tensor): n_timesteps interpolated |
|
shape: (n_timesteps + 1,) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
""" |
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] |
|
|
|
|
|
|
|
sol = [] |
|
|
|
for step in range(1, len(t_span)): |
|
dphi_dt = self.estimator(x, mask, mu, t, spks, cond) |
|
|
|
x = x + dt * dphi_dt |
|
t = t + dt |
|
sol.append(x) |
|
if step < len(t_span) - 1: |
|
dt = t_span[step + 1] - t |
|
|
|
return sol[-1] |
|
|
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None): |
|
"""Computes diffusion loss |
|
|
|
Args: |
|
x1 (torch.Tensor): Target |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): target mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
|
|
Returns: |
|
loss: conditional flow matching loss |
|
y: conditional flow |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
b, _, t = mu.shape |
|
|
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) |
|
|
|
z = torch.randn_like(x1) |
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 |
|
u = x1 - (1 - self.sigma_min) * z |
|
|
|
loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / ( |
|
torch.sum(mask) * u.shape[1] |
|
) |
|
return loss, y |
|
|
|
|
|
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: |
|
"""Make mask tensor containing indices of padded part. |
|
|
|
See description of make_non_pad_mask. |
|
|
|
Args: |
|
lengths (torch.Tensor): Batch of lengths (B,). |
|
Returns: |
|
torch.Tensor: Mask tensor containing indices of padded part. |
|
|
|
Examples: |
|
>>> lengths = [5, 3, 2] |
|
>>> make_pad_mask(lengths) |
|
masks = [[0, 0, 0, 0 ,0], |
|
[0, 0, 0, 1, 1], |
|
[0, 0, 1, 1, 1]] |
|
""" |
|
batch_size = lengths.size(0) |
|
max_len = max_len if max_len > 0 else lengths.max().item() |
|
seq_range = torch.arange(0, |
|
max_len, |
|
dtype=torch.int64, |
|
device=lengths.device) |
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) |
|
seq_length_expand = lengths.unsqueeze(-1) |
|
mask = seq_range_expand >= seq_length_expand |
|
return mask |
|
|
|
|
|
class ConditionalDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
causal=False, |
|
channels=(256, 256), |
|
dropout=0.05, |
|
attention_head_dim=64, |
|
n_blocks=1, |
|
num_mid_blocks=2, |
|
num_heads=4, |
|
act_fn="snake", |
|
gradient_checkpointing=True, |
|
): |
|
""" |
|
This decoder requires an input with the same shape of the target. So, if your text content |
|
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. |
|
""" |
|
super().__init__() |
|
channels = tuple(channels) |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.causal = causal |
|
self.static_chunk_size = 2 * 25 * 2 |
|
self.gradient_checkpointing = gradient_checkpointing |
|
|
|
self.time_embeddings = SinusoidalPosEmb(in_channels) |
|
time_embed_dim = channels[0] * 4 |
|
self.time_mlp = TimestepEmbedding( |
|
in_channels=in_channels, |
|
time_embed_dim=time_embed_dim, |
|
act_fn="silu", |
|
) |
|
self.down_blocks = nn.ModuleList([]) |
|
self.mid_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
output_channel = in_channels |
|
for i in range(len(channels)): |
|
input_channel = output_channel |
|
output_channel = channels[i] |
|
is_last = i == len(channels) - 1 |
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \ |
|
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) |
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
dim=output_channel, |
|
num_attention_heads=num_heads, |
|
attention_head_dim=attention_head_dim, |
|
dropout=dropout, |
|
activation_fn=act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
downsample = ( |
|
Downsample1D(output_channel) if not is_last else |
|
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1) |
|
) |
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) |
|
|
|
for _ in range(num_mid_blocks): |
|
input_channel = channels[-1] |
|
out_channels = channels[-1] |
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \ |
|
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) |
|
|
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
dim=output_channel, |
|
num_attention_heads=num_heads, |
|
attention_head_dim=attention_head_dim, |
|
dropout=dropout, |
|
activation_fn=act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
|
|
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) |
|
|
|
channels = channels[::-1] + (channels[0],) |
|
for i in range(len(channels) - 1): |
|
input_channel = channels[i] * 2 |
|
output_channel = channels[i + 1] |
|
is_last = i == len(channels) - 2 |
|
resnet = CausalResnetBlock1D( |
|
dim=input_channel, |
|
dim_out=output_channel, |
|
time_emb_dim=time_embed_dim, |
|
) if self.causal else ResnetBlock1D( |
|
dim=input_channel, |
|
dim_out=output_channel, |
|
time_emb_dim=time_embed_dim, |
|
) |
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
dim=output_channel, |
|
num_attention_heads=num_heads, |
|
attention_head_dim=attention_head_dim, |
|
dropout=dropout, |
|
activation_fn=act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
upsample = ( |
|
Upsample1D(output_channel, use_conv_transpose=True) |
|
if not is_last |
|
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1) |
|
) |
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) |
|
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1]) |
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.GroupNorm): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x, mask, mu, t, spks=None, cond=None): |
|
"""Forward pass of the UNet1DConditional model. |
|
|
|
Args: |
|
x (torch.Tensor): shape (batch_size, in_channels, time) |
|
mask (_type_): shape (batch_size, 1, time) |
|
t (_type_): shape (batch_size) |
|
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. |
|
cond (_type_, optional): placeholder for future use. Defaults to None. |
|
|
|
Raises: |
|
ValueError: _description_ |
|
ValueError: _description_ |
|
|
|
Returns: |
|
_type_: _description_ |
|
""" |
|
t = self.time_embeddings(t) |
|
t = t.to(x.dtype) |
|
t = self.time_mlp(t) |
|
x = pack([x, mu], "b * t")[0] |
|
mask = mask.to(x.dtype) |
|
if spks is not None: |
|
spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) |
|
x = pack([x, spks], "b * t")[0] |
|
if cond is not None: |
|
x = pack([x, cond], "b * t")[0] |
|
|
|
hiddens = [] |
|
masks = [mask] |
|
for resnet, transformer_blocks, downsample in self.down_blocks: |
|
mask_down = masks[-1] |
|
x = resnet(x, mask_down, t) |
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1) |
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
for transformer_block in transformer_blocks: |
|
if self.gradient_checkpointing and self.training: |
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
return custom_forward |
|
x = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(transformer_block), |
|
x, |
|
attn_mask, |
|
t, |
|
) |
|
else: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=attn_mask, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
hiddens.append(x) |
|
x = downsample(x * mask_down) |
|
masks.append(mask_down[:, :, ::2]) |
|
masks = masks[:-1] |
|
mask_mid = masks[-1] |
|
|
|
for resnet, transformer_blocks in self.mid_blocks: |
|
x = resnet(x, mask_mid, t) |
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1) |
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
for transformer_block in transformer_blocks: |
|
if self.gradient_checkpointing and self.training: |
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
return custom_forward |
|
x = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(transformer_block), |
|
x, |
|
attn_mask, |
|
t, |
|
) |
|
else: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=attn_mask, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
|
|
for resnet, transformer_blocks, upsample in self.up_blocks: |
|
mask_up = masks.pop() |
|
skip = hiddens.pop() |
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] |
|
x = resnet(x, mask_up, t) |
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1) |
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
for transformer_block in transformer_blocks: |
|
if self.gradient_checkpointing and self.training: |
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
return custom_forward |
|
x = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(transformer_block), |
|
x, |
|
attn_mask, |
|
t, |
|
) |
|
else: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=attn_mask, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
x = upsample(x * mask_up) |
|
x = self.final_block(x, mask_up) |
|
output = self.final_proj(x * mask_up) |
|
return output * mask |
|
|
|
|
|
class ConditionalCFM(BASECFM): |
|
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64): |
|
super().__init__( |
|
n_feats=in_channels, |
|
cfm_params=cfm_params, |
|
n_spks=n_spks, |
|
spk_emb_dim=spk_emb_dim, |
|
) |
|
self.t_scheduler = cfm_params.t_scheduler |
|
self.training_cfg_rate = cfm_params.training_cfg_rate |
|
self.inference_cfg_rate = cfm_params.inference_cfg_rate |
|
|
|
@torch.inference_mode() |
|
def forward(self, estimator, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): |
|
"""Forward diffusion |
|
|
|
Args: |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
n_timesteps (int): number of diffusion steps |
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
|
|
Returns: |
|
sample: generated mel-spectrogram |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
z = torch.randn_like(mu) * temperature |
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) |
|
if self.t_scheduler == 'cosine': |
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) |
|
return self.solve_euler(estimator, z, t_span=t_span.to(mu.dtype), mu=mu, mask=mask, spks=spks, cond=cond) |
|
|
|
def solve_euler(self, estimator, x, t_span, mu, mask, spks, cond): |
|
""" |
|
Fixed euler solver for ODEs. |
|
Args: |
|
x (torch.Tensor): random noise |
|
t_span (torch.Tensor): n_timesteps interpolated |
|
shape: (n_timesteps + 1,) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
""" |
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] |
|
|
|
|
|
|
|
sol = [] |
|
|
|
for step in range(1, len(t_span)): |
|
dphi_dt = estimator(x, mask, mu, t, spks, cond) |
|
|
|
if self.inference_cfg_rate > 0: |
|
cfg_dphi_dt = estimator( |
|
x, mask, |
|
torch.zeros_like(mu), t, |
|
torch.zeros_like(spks) if spks is not None else None, |
|
cond=cond |
|
) |
|
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - |
|
self.inference_cfg_rate * cfg_dphi_dt) |
|
x = x + dt * dphi_dt |
|
t = t + dt |
|
sol.append(x) |
|
if step < len(t_span) - 1: |
|
dt = t_span[step + 1] - t |
|
|
|
return sol[-1] |
|
|
|
def compute_loss(self, estimator, x1, mask, mu, spks=None, cond=None): |
|
"""Computes diffusion loss |
|
|
|
Args: |
|
x1 (torch.Tensor): Target |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): target mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
|
|
Returns: |
|
loss: conditional flow matching loss |
|
y: conditional flow |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
org_dtype = x1.dtype |
|
|
|
b, _, t = mu.shape |
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) |
|
if self.t_scheduler == 'cosine': |
|
t = 1 - torch.cos(t * 0.5 * torch.pi) |
|
|
|
z = torch.randn_like(x1) |
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 |
|
u = x1 - (1 - self.sigma_min) * z |
|
|
|
|
|
if self.training_cfg_rate > 0: |
|
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate |
|
mu = mu * cfg_mask.view(-1, 1, 1) |
|
if spks is not None: |
|
spks = spks * cfg_mask.view(-1, 1) |
|
if cond is not None: |
|
cond = cond * cfg_mask.view(-1, 1, 1) |
|
|
|
pred = estimator(y, mask, mu, t.squeeze(), spks, cond) |
|
pred = pred.float() |
|
u = u.float() |
|
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1]) |
|
loss = loss.to(org_dtype) |
|
return loss, y |
|
|