|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers import WhisperConfig |
|
from transformers import CLIPVisionConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class OmniConfig(PretrainedConfig): |
|
model_type = "omni" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=125696, |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
sparse_attention_heads=None, |
|
sparse_attention_layers=[], |
|
head_dim=None, |
|
attention_qkv_pack=True, |
|
attention_qkv_bias=False, |
|
use_norm_head=True, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
position_embedding_type="rope", |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
audio_config=None, |
|
visual_config=None, |
|
video_config=None, |
|
vocoder_config=None, |
|
flow_matching_config=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads or self.num_attention_heads |
|
self.sparse_attention_heads = sparse_attention_heads |
|
self.sparse_attention_layers = sparse_attention_layers |
|
self.head_dim = head_dim or self.hidden_size // self.num_attention_heads |
|
self.attention_qkv_pack = attention_qkv_pack |
|
self.attention_qkv_bias = attention_qkv_bias |
|
self.use_norm_head = use_norm_head |
|
self.hidden_act = hidden_act |
|
self.position_embedding_type = position_embedding_type |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
assert self.position_embedding_type.lower() in ("rope", "alibi") |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
if audio_config is not None: |
|
self.audio_config = WhisperConfig(**audio_config) |
|
if self.audio_config.vq_config is not None: |
|
self.audio_config.vq_config = PretrainedConfig(**self.audio_config.vq_config) |
|
if vocoder_config is not None: |
|
self.vocoder_config = WhisperConfig(**vocoder_config) |
|
if flow_matching_config is not None: |
|
self.flow_matching_config = PretrainedConfig(**flow_matching_config) |
|
self.flow_matching_config.cfm_params = PretrainedConfig(**self.flow_matching_config.cfm_params) |
|
if visual_config is not None: |
|
self.visual_config = CLIPVisionConfig(**visual_config) |
|
if video_config is not None: |
|
self.video_config = CLIPVisionConfig(**video_config) |
|
|
|
|
|
def to_diff_dict(self): |
|
data = super().to_diff_dict() |
|
data["model_type"] = self.model_type |
|
return data |
|
|
|
def get_rotary_base(self): |
|
if hasattr(self, "rotary_emb_base"): |
|
return self.rotary_emb_base |
|
else: |
|
return self.rope_theta |
|
|
|
if __name__ == '__main__': |
|
from transformers import AutoConfig |
|
config = AutoConfig.from_pretrained("./", trust_remote_code=True) |
|
print(config) |