Baichuan-Omni-1d5-Base / sequence_parallel_utils.py
lin5547's picture
Upload folder using huggingface_hub
2725f73 verified
raw
history blame
7.83 kB
from typing import Any, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from flash_attn import flash_attn_varlen_func
try:
import deepspeed.comm as dist
except:
dist = None
try:
from utils import (
get_sequence_parallel_group,
get_sequence_parallel_size,
get_sequence_parallel_rank
)
except (ModuleNotFoundError, ImportError):
# 从 utils 获取seq parallel设置,import不成功默认为不开启
get_sequence_parallel_group = lambda : None
get_sequence_parallel_size = lambda : 1
get_sequence_parallel_rank = lambda : 0
def single_all_to_all(input, scatter_idx, gather_idx, group):
seq_world_size = dist.get_world_size(group)
inp_shape = list(input.shape)
inp_shape[scatter_idx] = inp_shape[scatter_idx] // seq_world_size
if scatter_idx < 2:
input_t = input.reshape(
[seq_world_size, inp_shape[scatter_idx]] + \
inp_shape[scatter_idx + 1:]
).contiguous()
else:
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
input_t = input.reshape(
[-1, seq_world_size, inp_shape[scatter_idx]] + \
inp_shape[scatter_idx + 1:]
).transpose(0, 1).contiguous()
output = torch.empty_like(input_t)
dist.all_to_all_single(output, input_t, group=group)
# if scattering the seq-dim, transpose the heads back to the original dimension
# [sp_size, seq_len//sp_size, batch_size, head_num // sp_size, head_dim] -->
# [seq_len//sp_size,batch_size, sp_size, head_num // sp_size, head_dim]
if scatter_idx < 2:
output = output.transpose(0, 1).transpose(1, 2).contiguous()
return output.reshape(
inp_shape[: gather_idx] + \
[inp_shape[gather_idx] * seq_world_size,] + \
inp_shape[gather_idx + 1:]).contiguous()
class _SeqAllToAll(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, group: 'dist.ProcessGroup', input: Tensor, scatter_idx: int, gather_idx: int) -> Tensor:
ctx.group = group
ctx.scatter_idx = scatter_idx
ctx.gather_idx = gather_idx
return single_all_to_all(input, scatter_idx, gather_idx, group)
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
return (None, _SeqAllToAll.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None)
# import from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/sequence/layer.py
# but fix some bugs for 符合训练的维度设置
class DistributedAttention(nn.Module):
"""Initialization.
Arguments:
local_attention (Module): local attention with q,k,v
sequence_process_group (ProcessGroup): sequence parallel process group
scatter_idx (int): scatter_idx for all2all comm
gather_idx (int): gather_idx for all2all comm
"""
def __init__(
self,
local_attention: nn.Module,
sequence_process_group: 'dist.ProcessGroup',
scatter_idx: int = 2,
gather_idx: int = 0,
) -> None:
super(DistributedAttention, self).__init__()
self.local_attn = local_attention
self.spg = sequence_process_group
self.scatter_idx = scatter_idx
self.gather_idx = gather_idx
def pad_attention_head(self, query: Tensor, key: Tensor, value: Tensor):
# 将输入的head 维度pad到sp_size的倍数
sp_size = torch.distributed.get_world_size(self.spg)
pad_size = (sp_size - query.size(1) % sp_size) % sp_size
if pad_size > 0:
# [bs, num_head, seq_len, head_dim] -> [bs, num_head+pad_size, seq_len, head_dim]
query = torch.nn.functional.pad(query, (0,0,0,0,0,pad_size), value = 0.01)
key = torch.nn.functional.pad(key, (0,0,0,0,0,pad_size), value = 0.01)
value = torch.nn.functional.pad(value, (0,0,0,0,0,pad_size),value=0.0)
return query, key, value
def forward(self, query: Tensor, key: Tensor, value: Tensor, *args: Any, **kwargs) -> Tensor:
""" forward
Arguments:
query (Tensor): query input to the layer [batch_size, num_head, seq_len, head_dim]
key (Tensor): key input to the layer
value (Tensor): value input to the layer
args: other args
Returns:
* output (Tensor): context output
"""
# TODO Merge three alltoall calls into one
# TODO (Reza): change the api on the megatron-deepspeed side so that we only receive all data (q,k, and v) together!
# [batch_size,num_head,seq_len, head_dim ]trans to [seq_len,batch_size,num_head,head_dim]
origin_num_head = query.size(1)
query, key, value = self.pad_attention_head(query,key,value)
query = query.transpose(1,2).transpose(0,1)
key = key.transpose(1,2).transpose(0,1)
value = value.transpose(1,2).transpose(0,1)
#in shape : e.g., [s/p,bs,h,head_dim]
query_layer = _SeqAllToAll.apply(self.spg, query, self.scatter_idx, self.gather_idx).transpose(0,1).transpose(1,2).contiguous()
key_layer = _SeqAllToAll.apply(self.spg, key, self.scatter_idx, self.gather_idx).transpose(0,1).transpose(1,2).contiguous()
value_layer = _SeqAllToAll.apply(self.spg, value, self.scatter_idx, self.gather_idx).transpose(0,1).transpose(1,2).contiguous()
context_layer = self.local_attn(query_layer, key_layer, value_layer, *args, **kwargs)
context_layer = context_layer.transpose(0,1).contiguous()
# [seq_len, batch_size, num_head, head_dim]
output = _SeqAllToAll.apply(self.spg, context_layer, self.gather_idx, self.scatter_idx)
return output.transpose(0,1)[:,:,:origin_num_head,:]
class LocalAttention(nn.Module):
def __init__(self, hidden_size, num_heads, head_dim):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = head_dim
def forward(self, q, k, v, *args, use_flash=True, **kwargs):
# input q,k,v [batch_size, num_head, seq_len, head_dim]
# output [batch_size, seq_len, num_head, head_dim]
if use_flash:
q_len, num_heads = q.shape[2], q.shape[1]
q = q.transpose(1,2).reshape(-1, num_heads, self.head_dim)
k = k.transpose(1,2).reshape(-1, num_heads, self.head_dim)
v = v.transpose(1,2).reshape(-1, num_heads, self.head_dim)
return flash_attn_varlen_func(q,k,v,*args, **kwargs).reshape(-1,q_len, num_heads, self.head_dim)
else:
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False):
attn_output = F.scaled_dot_product_attention(
q,k,v, *args, **kwargs)
attn_output = attn_output.transpose(1, 2)
return attn_output
def create_attention_layer(hidden_size, num_heads, head_dim):
if get_sequence_parallel_group() is None:
return LocalAttention(hidden_size, num_heads, head_dim)
else:
return DistributedAttention(
local_attention=LocalAttention(hidden_size, num_heads, head_dim),
sequence_process_group=get_sequence_parallel_group()
)
def get_sequence_parallel_chunk(tensor, dim=1, shift=0):
assert tensor.size(dim) % get_sequence_parallel_size() == 0
original_size = tensor.size(dim)
if shift:
tensor = tensor.split([shift, tensor.size(dim) - shift], dim=dim)[1]
if get_sequence_parallel_group() is None:
return tensor
else:
chunk_size = original_size // get_sequence_parallel_size()
return tensor.split(chunk_size, dim=dim)[get_sequence_parallel_rank()]