Baichuan-Omni-1d5-Base / modeling_omni.py
lin5547's picture
Upload folder using huggingface_hub
2725f73 verified
raw
history blame
45.5 kB
# Copyright 2023 Baichuan Inc. All Rights Reserved.
#
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch omni model."""
import os
import time
import json
import math
import numpy as np
from typing import List, Optional, Tuple, Union, Any
from threading import Thread
from easydict import EasyDict
import torch
import torch.distributed
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
import torch.distributed as dist
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from dataclasses import dataclass
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
from transformers.generation.utils import GenerationConfig
from transformers.utils import logging
# import for dynamic import not used in this file
from .vector_quantize import VectorQuantize, EuclideanCodebook
from .matcha_components import (
SinusoidalPosEmb,
Block1D,
ResnetBlock1D,
Downsample1D,
TimestepEmbedding,
Upsample1D,
)
from .matcha_transformer import BasicTransformerBlock
from .flow_matching import ConditionalDecoder, ConditionalCFM
from .configuration_omni import OmniConfig
from .audio_modeling_omni import (RMSNorm,
OmniAudioEncoder,
OmniAudioDecoder,
OmniAudioVQBridgeTokenizer,
OmniAudioFlowMatchingDecoder)
from .visual_modeling_omni import OmniVisualEncoder, OmniVisualBridge
from .processor_omni import OmniMMProcessor
# support model path contain point(.)
try:
# step1: copy relative imports to transformers_modules
from .generation_utils import build_chat_input, TextIterStreamer
from .sequence_parallel_utils import (
create_attention_layer,
get_sequence_parallel_size,
get_sequence_parallel_chunk,
)
except ModuleNotFoundError:
# step2: direct import from transformers_modules
try: # bypass check_imports failure
import sys
sys.path.append(os.path.dirname(__file__))
from generation_utils import build_chat_input, TextIterStreamer
from sequence_parallel_utils import (
create_attention_layer,
get_sequence_parallel_size,
get_sequence_parallel_chunk,
)
except Exception:
raise
logger = logging.get_logger(__name__)
def get_slopes(n):
def get_slopes_power_of_2(n):
start = (2 ** (-2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio ** i for i in range(n)]
if math.log2(n).is_integer():
return get_slopes_power_of_2(
n) # In the paper, we only train models that have 2^a heads for some a. This function has
else: # some good properties that only occur when the input is a power of 2. To maintain that even
closest_power_of_2 = 2 ** math.floor(
math.log2(n)) # when the number of heads is not a power of 2, we use this workaround.
return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][
:n - closest_power_of_2]
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=5e6, device=None):
super().__init__()
# 修复RePE初始化精度问题 https://zhuanlan.zhihu.com/p/678963442
# DeepSpeed 会 Hack torch.arange 强制在 GPU 上运行,这里使用原生的 torch.arange
try:
import deepspeed
self.arange = deepspeed.runtime.zero.partition_parameters._orig_torch_arange
except:
self.arange = torch.arange
self.inv_freq = 1.0 / (base ** (self.arange(0, dim, 2).float().to(device) / dim))
self.max_seq_len_cached = max_position_embeddings
t = self.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32)
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
t = self.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device)
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device)
return (
self.cos_cached[:, :, :seq_len, ...].to(torch.float32).to(x.device),
self.sin_cached[:, :, :seq_len, ...].to(torch.float32).to(x.device),
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids):
cos = cos_.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin_.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
return q_embed.to(q.dtype), k_embed.to(k.dtype)
class MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: OmniConfig, is_sparse=False):
super().__init__()
self.config = config
self.position_embedding_type = config.position_embedding_type.lower()
self.num_kv_heads = config.num_key_value_heads
self.head_dim = config.head_dim
self.hidden_size = config.num_attention_heads * self.head_dim
self.hidden_kv_size = self.num_kv_heads * self.head_dim
if is_sparse:
self.num_heads = config.sparse_attention_heads
assert self.num_kv_heads == config.num_attention_heads
self.W_pack = nn.Linear(self.hidden_size, 3 * self.num_heads * self.head_dim, bias=config.attention_qkv_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
else:
self.num_heads = config.num_attention_heads
if self.config.attention_qkv_pack:
self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + self.hidden_kv_size * 2, bias=config.attention_qkv_bias)
else:
self.q_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=config.attention_qkv_bias)
self.k_proj = nn.Linear(config.hidden_size, self.hidden_kv_size, bias=config.attention_qkv_bias)
self.v_proj = nn.Linear(config.hidden_size, self.hidden_kv_size, bias=config.attention_qkv_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
if self.position_embedding_type == 'rope':
self.rotary_emb = RotaryEmbedding(
dim=self.head_dim,
max_position_embeddings=config.max_position_embeddings,
base=config.get_rotary_base()
)
elif self.position_embedding_type == 'alibi':
self.alibi_slopes = get_slopes(self.num_heads)
self.attention = create_attention_layer(self.hidden_size, self.num_heads, self.head_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _repeat_kv(self, hidden_states: torch.Tensor, num_heads: int) -> torch.Tensor:
assert hidden_states.size(1) <= num_heads and num_heads % hidden_states.size(1) == 0
return repeat_kv(hidden_states, num_heads // hidden_states.size(1))
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
seqlens: Optional[torch.IntTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len = hidden_states.shape[:2]
if self.config.attention_qkv_pack:
proj = self.W_pack(hidden_states)
query_states, key_states, value_states = proj.split([self.hidden_size, self.hidden_kv_size, self.hidden_kv_size], dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# (B, S, hidden_size) -> (B, num_heads, S, head_size)
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
# (B, S, hidden_size) -> (B, num_kv_heads, S, head_size)
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if self.position_embedding_type == 'rope':
max_position = position_ids.max().item()+1 if position_ids is not None else kv_seq_len * get_sequence_parallel_size()
cos, sin = self.rotary_emb(value_states, seq_len=max_position)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin,
get_sequence_parallel_chunk(position_ids)
)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = self._repeat_kv(key_states, query_states.size(1))
value_states = self._repeat_kv(value_states, query_states.size(1))
if seqlens is not None:
seqlens = seqlens.to(dtype=torch.int32)
max_seqlen = (seqlens[1:] - seqlens[:-1]).max().item()
if self.position_embedding_type == 'alibi':
alibi_slopes = torch.tensor(self.alibi_slopes, dtype=torch.float32).to(query_states.device)
else:
alibi_slopes = None
attn_output = self.attention(
query_states, key_states, value_states, seqlens, seqlens,
max_seqlen, max_seqlen, causal=True, alibi_slopes=alibi_slopes, use_flash=True)
else:
attn_output = self.attention(
query_states, key_states, value_states, attn_mask=attention_mask, use_flash=False)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
class DecoderLayer(nn.Module):
def __init__(self, config: OmniConfig, is_sparse=False):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Attention(config=config, is_sparse=is_sparse)
self.mlp = MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
seqlens: Optional[torch.IntTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
group_index=None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
seqlens=seqlens,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class OmniPreTrainedModel(PreTrainedModel):
config_class = OmniConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DecoderLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or isinstance(module, nn.ConvTranspose1d):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm) or isinstance(module, nn.GroupNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
elif isinstance(module, RMSNorm):
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, OmniModel):
module.gradient_checkpointing = value
@dataclass
class OmniModelOutputWithPast(BaseModelOutputWithPast):
audio_encoder_ret: Optional[Any] = None
audio_decoder_ret: Optional[Any] = None
class OmniModel(OmniPreTrainedModel):
def __init__(self, config: OmniConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
if config.visual_config.enable:
self.visual_model = OmniVisualEncoder(config.visual_config)
self.visual_bridge_model = OmniVisualBridge(config.visual_config)
if config.video_config.enable and not config.visual_config.enable: # in case 没有visual_config而只有video_config
self.visual_model = OmniVisualEncoder(config.video_config)
self.visual_bridge_model = OmniVisualBridge(config.video_config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([
DecoderLayer(config, is_sparse=layer_idx in config.sparse_attention_layers)
for layer_idx in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.audio_embed_layers = nn.ModuleList([
nn.Embedding(codedim + 1, config.hidden_size)
for i, codedim in enumerate(config.audio_config.vq_config.codebook_sizes)
])
self.gradient_checkpointing = True
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@torch.no_grad()
def get_multimodal_mask(self, input_ids, pad_token_id, special_token_list):
'''
获取任意模态的特殊mask,包含以下
1. pad mask 表示文本中图像/语音/视频模态提前留出的token位置
2. special token mask 特殊token 例如对理解模型<start> <end> 不需要next token prediction
3. embedding mask / lm_head mask 标记出特殊token在embedding中的mask
'''
pad_mask = torch.eq(input_ids, pad_token_id)
sp_mask = torch.zeros_like(input_ids, dtype=torch.bool)
lm_head_mask = torch.zeros([self.config.vocab_size, 1], dtype=torch.bool)
for sp_id in special_token_list:
sp_mask = torch.logical_or(sp_mask, torch.eq(input_ids, sp_id))
lm_head_mask[sp_id, 0] = True
return pad_mask, sp_mask, lm_head_mask
def get_multimodal_embed(
self,
input_ids,
text_embedding, # 1. self.embed_tokens(input_ids) 2. 其他模态结果
multimodal_embed,
pad_token_id,
fake_input,
group_index=None, # 某种模态的编号
):
pad_mask, sp_mask, _ = self.get_multimodal_mask(input_ids, pad_token_id, self.config.multimodal_special_token_list)
if not self.training: # 推理支持auto map 把多模态模块输出和input_ids 统一到一个device
multimodal_embed = multimodal_embed.to(input_ids.device)
if not fake_input: # 检查多模态token 和 pad mask数量一致 (不正确的截断会导致该问题)
assert pad_mask.sum() == multimodal_embed.shape[0]
else:
assert pad_mask.sum() <= 0
# 合并 当前模态embeddings 和text embeddings
input_ids = torch.where(pad_mask, torch.cumsum(pad_mask.view(-1).to(input_ids), dim=0).view(input_ids.shape)-1, input_ids)
text_embedding = (1 - pad_mask.to(text_embedding)).unsqueeze(-1) * text_embedding # pad token位置填0
multimodal_embedding = torch.embedding(multimodal_embed, input_ids * pad_mask) # 非 pad token 位置填idx=0位置结果
multimodal_embedding = pad_mask.to(multimodal_embedding).unsqueeze(-1) * multimodal_embedding # 非pad token 位置填0
final_embedding = multimodal_embedding.to(text_embedding) + text_embedding
if group_index is None:
group_index = pad_mask.to(torch.int32)
else:
current_index = torch.max(group_index) + 1
group_index += pad_mask.to(torch.int32) * current_index # 假设模态无重叠
return final_embedding, group_index
def get_visual_embed(
self,
input_ids,
text_embedding, # 1. self.embed_tokens(input_ids) 2. 其他模态结果
images = None,
patch_nums = None,
images_grid = None,
videos = None,
videos_patch_nums = None,
videos_grid = None,
group_index = None, # 某种模态的编号
):
if images is None or len(images) <= 0:
images, images_grid, patch_nums = self.visual_model.fake_input(input_ids.device)
image_fake_input = True
else:
image_fake_input = False
if videos is None or len(videos) <= 0 :
videos, videos_grid, videos_patch_nums = self.visual_model.fake_input(input_ids.device)
video_fake_input = True
else:
video_fake_input = False
visual_input = images + videos
visual_grid = images_grid + videos_grid
visual_input = torch.cat(visual_input, dim=0)
visual_grid = torch.tensor(np.array(visual_grid))
visual_embed = self.visual_model(visual_input, grid_thw=visual_grid)
visual_embed = self.visual_bridge_model(visual_embed)
assert sum(patch_nums) + sum(videos_patch_nums) == visual_embed.shape[0]
images_embed = visual_embed[:sum(patch_nums)]
videos_embed = visual_embed[sum(patch_nums):]
final_embedding, group_index = self.get_multimodal_embed(input_ids, text_embedding, images_embed, self.config.visual_config.image_pad_token_id, image_fake_input, group_index=group_index)
final_embedding, group_index = self.get_multimodal_embed(input_ids, final_embedding, videos_embed, self.config.video_config.video_place_token_id, video_fake_input, group_index=group_index)
return final_embedding, group_index
@torch.no_grad()
def audio_fake_input(self, device):
return torch.zeros(5, len(self.config.audio_config.vq_config.codebook_sizes), dtype=torch.int32, device=device)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
seqlens: Optional[torch.IntTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
audios_tokens: Optional[List|torch.Tensor] = None, # 音频token bs*seqlen*vq_num
images: Optional[List|torch.Tensor] = None,
patch_nums: Optional[torch.Tensor] = None,
images_grid: Optional[List|torch.Tensor] = None,
videos: Optional[List|torch.Tensor] = None,
videos_patch_nums: Optional[torch.Tensor] = None,
videos_grid: Optional[List|torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, OmniModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = True if (return_dict is not None or self.training) else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
group_index, audio_decoder_ret = None, None
if inputs_embeds is None:
sp_input_ids = get_sequence_parallel_chunk(input_ids)
inputs_embeds = self.embed_tokens(sp_input_ids)
if audios_tokens is None or len(audios_tokens) <= 0 :
audios_tokens = torch.zeros(5, len(self.config.audio_config.vq_config.codebook_sizes), dtype=torch.int32, device=input_ids.device) # a fake input
fake_input = True
else:
fake_input = False
for i, audio_emb_layer in enumerate(self.audio_embed_layers):
if i==0:
audio_embs = audio_emb_layer(audios_tokens[..., i])
else:
audio_embs += audio_emb_layer(audios_tokens[..., i])
inputs_embeds, group_index = self.get_multimodal_embed(sp_input_ids, inputs_embeds, audio_embs, self.config.audio_config.audio_pad_token_id, fake_input, group_index=group_index)
if self.config.visual_config.enable or self.config.video_config.enable:
inputs_embeds, group_index = self.get_visual_embed(sp_input_ids, inputs_embeds, images, patch_nums, images_grid, videos, videos_patch_nums, videos_grid, group_index=group_index) # 注意更新group index
if seqlens is not None and seqlens.ndim == 2:
cu_seqlens = []
offset, seqlen = 0, seqlens.size(1)
for lens in seqlens:
cu_seqlens.append(offset)
cu_seqlens.extend((lens[(lens > 0) & (lens < seqlen)] + offset).tolist())
offset += seqlen
cu_seqlens.append(offset)
seqlens = torch.tensor(cu_seqlens, dtype=seqlens.dtype, device=seqlens.device)
elif seqlens is None and self.training:
seqlens = torch.arange(
end=input_ids.size(0) + 1,
dtype=torch.int32,
device=input_ids.device
) * input_ids.size(1)
if seqlens is not None:
attention_mask = None # unset attention_mask to save memory
if seqlens is None and attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
if attention_mask is not None:
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, False, group_index)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
seqlens,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
seqlens=seqlens,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
group_index=group_index,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class NormHead(nn.Module):
def __init__(self, hidden_size, vocab_size, bias=False):
super().__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.weight = nn.Parameter(torch.empty((self.vocab_size, self.hidden_size)))
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states, mask=None):
norm_weight = nn.functional.normalize(self.weight)
if mask is not None:
mask = mask.to(norm_weight)
norm_weight = norm_weight * mask + (1 - mask) * norm_weight.detach()
return nn.functional.linear(hidden_states, norm_weight)
def extra_repr(self) -> str:
return f'in_features={self.hidden_size}, out_features={self.vocab_size}'
@dataclass
class OmniMMCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
audios_emb_for_infer: Optional[torch.FloatTensor] = None # 用于audio head 推理的 embeddings
class CasualDepthTransformerLayer(nn.Module):
def __init__(self, config, depth):
super().__init__()
self.config = config
embed_size = config.hidden_size
assert embed_size % 128 == 0
num_heads = embed_size // 128
self.self_attention = nn.MultiheadAttention(embed_dim=embed_size, num_heads=num_heads,batch_first=True)
self.layernorm1 = RMSNorm(embed_size)
self.layernorm2 = RMSNorm(embed_size)
self.linear1 = nn.Linear(embed_size * depth, 2 * embed_size)
self.linear2 = nn.Linear(2 * embed_size * depth, embed_size)
def forward(self, x):
seq_len = x.size(1)
res = x
x = self.layernorm1(x)
src_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1).bool().to(x.device)
_x, _ = self.self_attention(x, x, x, is_causal=True, attn_mask=src_mask)
res = _x + res # (bs, sl, d)
res = self.layernorm2(res)
x = torch.einsum('bld,tld->blt', res, torch.reshape(self.linear1.weight, (2 * self.config.hidden_size, -1, self.config.hidden_size)))
x = torch.nn.functional.gelu(x)
x = torch.einsum('blt,dlt->bld', x, torch.reshape(self.linear2.weight, (self.config.hidden_size, -1, 2 * self.config.hidden_size)))
return res + x
class OmniAudioHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
hidden_size = config.hidden_size
self.transformer_layers = nn.ModuleList([
CasualDepthTransformerLayer(config, len(config.audio_config.vq_config.codebook_sizes))
for _ in range(config.audio_config.audio_head_transformer_layers)
])
self.headnorm = RMSNorm(hidden_size)
self.heads = nn.ModuleList([
nn.Linear(hidden_size, vq_size+1)
for vq_size in config.audio_config.vq_config.codebook_sizes
])
self.gradient_checkpointing = True
def forward(self, x, audios_tokens, audio_emb_layers):
cumsum_audio_embed = torch.stack([
audio_emb_layers[i](audios_tokens[..., i])
for i, vq_size in enumerate(self.config.audio_config.vq_config.codebook_sizes[:-1])
], dim=1)
cumsum_audio_embed = torch.cumsum(cumsum_audio_embed, dim=1) # (bs, depth-1, d)
hidden_states = torch.concat([x.reshape(-1, 1, self.config.hidden_size), cumsum_audio_embed], dim=1) # (bs, depth, d)
assert hidden_states.size(1) == len(self.config.audio_config.vq_config.codebook_sizes)
for i, tlayer in enumerate(self.transformer_layers):
hidden_states = tlayer(hidden_states,)
hidden_states = self.headnorm(hidden_states)
logits = [head(hidden_states[:,i]) for i, head in enumerate(self.heads)]
return logits
class OmniForCausalLM(OmniPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = OmniModel(config)
self.audio_tokenizer = OmniAudioTokenizer(config)
self.audio_head = OmniAudioHead(config)
if config.use_norm_head:
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
else:
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
@property
def main_device(self):
return self.lm_head.weight.device
def bind_processor(self, tokenizer, **kwargs):
self.processor = OmniMMProcessor(
tokenizer=tokenizer,
config=self.config,
**kwargs,
)
return self.processor
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
seqlens: Optional[torch.IntTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
audios: Optional[List|torch.Tensor] = None,
audios_tokens: Optional[List|torch.Tensor] = None,
encoder_length: Optional[torch.Tensor] = None,
bridge_length: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
patch_nums: Optional[torch.Tensor] = None,
images_grid: Optional[torch.Tensor] = None,
videos: Optional[torch.Tensor] = None,
videos_patch_nums: Optional[torch.Tensor] = None,
videos_grid: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if audios_tokens is not None:
assert isinstance(audios_tokens, torch.Tensor)
else:
if audios is None or len(audios) == 0:
audios_tokens = None
else:
audios_tokens = self.audio_tokenizer(audios,encoder_length,bridge_length)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
seqlens=seqlens,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
audios_tokens=audios_tokens,
images=images,
patch_nums=patch_nums,
images_grid=images_grid,
videos=videos,
videos_patch_nums=videos_patch_nums,
videos_grid=videos_grid,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs.last_hidden_state
audios_emb_for_infer = hidden_states[:,-1,:]
logits = self.lm_head(hidden_states)
return OmniMMCausalLMOutputWithPast(
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
audios_emb_for_infer=audios_emb_for_infer
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, past_key_values[0][0].shape[-2]:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1)
# position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, past_key_values[0][0].shape[-2]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
elif past_key_values is not None:
model_inputs = {"input_ids": input_ids}
else:
model_inputs = {"input_ids": input_ids,
"audios": kwargs.get("audios", None), "encoder_length": kwargs.get("encoder_length", None), "bridge_length": kwargs.get("bridge_length", None),
"audios_tokens": kwargs.get("audios_tokens", None),
"images": kwargs.get("images", None),
"videos": kwargs.get("videos", None)
}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images_grid": kwargs.get("images_grid"),
"videos_grid": kwargs.get("videos_grid"),
"patch_nums": kwargs.get("patch_nums"),
"videos_patch_nums": kwargs.get("videos_patch_nums"),
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
def chat(self, tokenizer, messages: List[dict], stream=False,
generation_config: Optional[GenerationConfig]=None):
generation_config = generation_config or self.generation_config
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
if stream:
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
Thread(target=self.generate, kwargs=dict(
inputs=input_ids, streamer=streamer,
generation_config=generation_config,
)).start()
return streamer
else:
outputs = self.generate(input_ids, generation_config=generation_config)
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
return response
class OmniAudioTokenizer(OmniPreTrainedModel):
"""
Construct an audio tokenizer and decoder.
"""
def __init__(self, config: OmniConfig):
super().__init__(config)
self.padding_idx = None
self.vocab_size = config.vocab_size
self.training = False
self.eval()
self.audio_model = OmniAudioEncoder(config.audio_config)
self.audio_bridge_model = OmniAudioVQBridgeTokenizer(config)
if config.vocoder_config.enable:
self.audio_decoder = OmniAudioDecoder(config)
if config.flow_matching_config.enable:
self.audio_flow_matching_decoder = OmniAudioFlowMatchingDecoder(config)
def encode(self, x, encoder_length: Optional[torch.Tensor] = None,
bridge_length: Optional[torch.Tensor] = None):
audio_emb = self.audio_model(x, encoder_length)
audios_tokens = self.audio_bridge_model(audio_emb, bridge_length)
return audios_tokens
def decode(self, audio_code_ids, bridge_length: Optional[torch.Tensor] = None):
assert self.config.vocoder_config.enable, "Vocoder is not enabled in config."
audio_emb = self.audio_bridge_model.decode(audio_code_ids)
audio_dec = self.audio_decoder(
audio_emb.to(next(self.audio_decoder.parameters())), bridge_length
)
if self.config.flow_matching_config.enable:
if self.config.flow_matching_config.use_hidden_states_before_dconv2:
hidden_states, hidden_states_length = (
self.audio_flow_matching_decoder.unpack_hidden_states(
audio_dec.hidden_states_before_dconv2,
audio_dec.output_length_before_dconv2,
)
)
audio_flow_matching_decoder_ret = self.audio_flow_matching_decoder(
hidden_states, hidden_states_length
)
else:
audio_flow_matching_decoder_ret = self.audio_flow_matching_decoder(
audio_dec.refined_mel, audio_dec.mel_length
)
return audio_flow_matching_decoder_ret
else:
return audio_dec
@torch.no_grad()
def forward(self, audios, encoder_length: Optional[torch.Tensor] = None, bridge_length: Optional[torch.Tensor] = None):
self.eval()
audios_tokens = self.encode(audios, encoder_length, bridge_length)
return audios_tokens