File size: 28,519 Bytes
2725f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
import torch, fire
from typing import Optional
import torch.distributed
from torch.nn import functional as F
from flash_attn import flash_attn_varlen_func
from torch import nn
import numpy as np
import deepspeed
from transformers.activations import ACT2FN
from dataclasses import dataclass
from transformers.modeling_outputs import ModelOutput
try:
from .vector_quantize import VectorQuantize
except:
from vector_quantize import VectorQuantize
from .flow_matching import (
ConditionalDecoder,
ConditionalCFM,
)
import math
import copy
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
def get_sequence_mask(inputs, inputs_length):
if inputs.dim() == 3:
bsz, tgt_len, _ = inputs.size()
else:
bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length)
sequence_mask = torch.arange(0, tgt_len).to(inputs.device)
sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view(bsz, tgt_len, 1)
unpacking_index = torch.cumsum(sequence_mask.to(torch.int64).view(-1), dim=0) - 1 # 转成下标
return sequence_mask, unpacking_index
def unpack_hidden_states(hidden_states, lengths):
bsz = lengths.shape[0]
sequence_mask, unpacking_index = get_sequence_mask(hidden_states, lengths)
hidden_states = torch.index_select(hidden_states, 0, unpacking_index).view(
bsz, torch.max(lengths), hidden_states.shape[-1]
)
hidden_states = torch.where(
sequence_mask, hidden_states, 0
) # 3d (bsz, max_input_len, d)
return hidden_states
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class OmniWhisperAttention(nn.Module):
def __init__(self, embed_dim, num_heads, causal=False):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.causal = causal
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor):
bsz, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, self.num_heads, self.head_dim)
key_states = self.k_proj(hidden_states).view(bsz, self.num_heads, self.head_dim)
value_states = self.v_proj(hidden_states).view(bsz, self.num_heads, self.head_dim)
cu_len = F.pad(torch.cumsum(seq_len, dim=0), (1, 0), "constant", 0).to(torch.int32)
max_seqlen = torch.max(seq_len).to(torch.int32).detach()
attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_len, cu_len, max_seqlen,
max_seqlen, causal=self.causal) # (bsz * qlen, nheads, headdim)
attn_output = attn_output.reshape(bsz, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output
class OmniWhisperTransformerLayer(nn.Module):
def __init__(
self,
act,
d_model,
encoder_attention_heads,
encoder_ffn_dim,
causal,
ln_type="LayerNorm",
):
super().__init__()
self.embed_dim = d_model
self.self_attn = OmniWhisperAttention(
self.embed_dim, encoder_attention_heads, causal
)
if ln_type == "LayerNorm":
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
elif ln_type == "RMSNorm":
self.self_attn_layer_norm = RMSNorm(self.embed_dim)
else:
raise ValueError(f"Unknown ln_type: {ln_type}")
self.activation_fn = act
self.fc1 = nn.Linear(self.embed_dim, encoder_ffn_dim)
self.fc2 = nn.Linear(encoder_ffn_dim, self.embed_dim)
if ln_type == "LayerNorm":
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
elif ln_type == "RMSNorm":
self.final_layer_norm = RMSNorm(self.embed_dim)
else:
raise ValueError(f"Unknown ln_type: {ln_type}")
def forward(
self, hidden_states: torch.Tensor, seq_len: torch.Tensor
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states, seq_len)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.fc2(hidden_states)
hidden_states = residual + hidden_states
if (
hidden_states.dtype == torch.float16
or hidden_states.dtype == torch.bfloat16
) and (torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(
hidden_states, min=-clamp_value, max=clamp_value
)
return hidden_states
class OmniAudioEncoder(nn.Module):
def __init__(self, config):
super().__init__()
config._attn_implementation = 'flash_attention_2' #
self.config = config
self.max_source_positions = (config.max_audio_seconds * config.sampling_rate // config.hop_length) // config.stride_size
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.conv1 = nn.Conv1d(config.num_mel_bins, config.d_model, kernel_size=config.kernel_size, padding=1)
self.conv2 = nn.Conv1d(config.d_model, config.d_model, kernel_size=config.kernel_size,
stride=config.stride_size, padding=1)
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, config.d_model)) # 1500 * d
self.layers = nn.ModuleList([OmniWhisperTransformerLayer(
ACT2FN[config.activation_function],
config.d_model,
config.encoder_attention_heads,
config.encoder_ffn_dim,
False) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
@torch.no_grad()
def fake_input(self, device):
input_features = torch.rand([2, self.config.num_mel_bins, 10], dtype=torch.float32, device=device)
encoder_length = torch.ones([2], dtype=torch.int32, device=device) * 3
bridge_length = torch.ones([2], dtype=torch.int32, device=device)
return input_features, encoder_length, bridge_length
def forward(
self,
input_features,
output_length,
):
input_features = input_features.to(self.conv1.weight.dtype)
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) # (bs, channels, frames)
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) # (bs, channels, frames // 2)
inputs_embeds = inputs_embeds.permute(0, 2, 1) # (bs, frams, channels)
bsz, tgt_len, _ = inputs_embeds.size()
if tgt_len < self.positional_embedding.shape[0]:
current_positional_embedding = self.positional_embedding[:tgt_len]
else:
current_positional_embedding = self.positional_embedding
hidden_states = (inputs_embeds.to(torch.float32) + current_positional_embedding).to(inputs_embeds.dtype)
# packing hidden states
attention_mask, unpacking_index = get_sequence_mask(hidden_states, output_length)
hidden_states = torch.masked_select(hidden_states, attention_mask).view(torch.sum(output_length),
self.config.d_model)
for idx, encoder_layer in enumerate(self.layers):
hidden_states = encoder_layer(hidden_states, output_length)
hidden_states = self.layer_norm(hidden_states)
# unpacking
hidden_states = torch.index_select(hidden_states, 0, unpacking_index).view(bsz, tgt_len, self.config.d_model)
hidden_states = torch.where(attention_mask, hidden_states, 0)
return hidden_states
class CasualConvTranspose1d(nn.Module): # 反卷积
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride)
self.norm = nn.GroupNorm(1, out_channels)
self.in_channels = in_channels
self.out_channels = out_channels
def forward(self, hidden_states, input_length, output_dim=None):
kernel_size = self.conv.kernel_size[0]
stride = self.conv.stride[0]
bsz = input_length.shape[0]
if output_dim is None:
output_dim = hidden_states.dim()
if hidden_states.dim() <= 2: # unpack sequence to 3d
sequence_mask, unpacking_index = get_sequence_mask(hidden_states, input_length)
hidden_states = torch.index_select(hidden_states, 0, unpacking_index).view(bsz, torch.max(input_length),
self.in_channels)
hidden_states = torch.where(sequence_mask, hidden_states, 0) # 3d (bsz, max_input_len, d)
hidden_states = hidden_states.transpose(2, 1) # (N, L, C) -> (N, C, L)
hidden_states = self.conv(hidden_states)
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.transpose(2, 1) # (N, C, L) -> (N, L, C)
casual_padding_right = max(0, kernel_size - stride)
hidden_states = hidden_states[:, :hidden_states.shape[1] - casual_padding_right,
:]
output_length = (input_length - 1) * stride + kernel_size - casual_padding_right
sequence_mask, _ = get_sequence_mask(hidden_states, output_length)
if output_dim <= 2:
hidden_states = torch.masked_select(hidden_states, sequence_mask).view(-1, self.out_channels)
else:
hidden_states = torch.where(sequence_mask, hidden_states, 0)
hidden_states = hidden_states[:, :torch.max(output_length), :] # 截断到最大有效长度
return hidden_states, output_length
class MelSpecRefineNet(nn.Module):
"""
# post net, coarse to refined mel-spectrogram frames
# ref1: Autoregressive Speech Synthesis without Vector Quantization
# ref2: CosyVoice length_regulator.py
# ref3: Neural Speech Synthesis with Transformer Network https://github.com/soobinseo/Transformer-TTS/blob/master/network.py
"""
def __init__(self, encoder_config, vocoder_config):
super().__init__()
self.encoder_config = encoder_config
self.vocoder_config = vocoder_config
layers = nn.ModuleList([])
in_channels = self.vocoder_config.num_mel_bins
for i, out_channels in enumerate(self.vocoder_config.channels[:-1]):
module = nn.Conv1d(in_channels, out_channels, 5, 1, 2) # cosyvoice kernel=3, stride=1, pad=1
in_channels = out_channels
norm = nn.GroupNorm(1, out_channels)
act = nn.Mish()
layers.extend([module, norm, act])
layers.append(nn.Conv1d(in_channels, self.vocoder_config.num_mel_bins, 1, 1)) # projector
self.layers = nn.Sequential(*layers)
def compute_output_length(self, input_length):
output_length = input_length.to(
torch.float32) * self.encoder_config.hop_length / self.encoder_config.sampling_rate
output_length = output_length * self.vocoder_config.sampling_rate / self.vocoder_config.hop_length
return output_length.to(torch.int64)
def forward(self, coarse_mel, input_length, output_length=None):
bsz, _, d = coarse_mel.shape
assert (d == self.vocoder_config.num_mel_bins)
if output_length is None or not self.training:
output_length = self.compute_output_length(input_length)
coarse_mel, default_dtype = coarse_mel[:, :torch.max(input_length), :], coarse_mel.dtype
coarse_mel = F.interpolate(coarse_mel.to(torch.float32).transpose(1, 2).contiguous(), size=output_length.max(),
mode='nearest').to(default_dtype)
refined_mel = self.layers(coarse_mel).transpose(1, 2).contiguous() # (bs, t, d)
coarse_mel = coarse_mel.transpose(1, 2) # (bs, max(output_length), d)
refined_mel += coarse_mel # residual conntection
sequence_mask, _ = get_sequence_mask(refined_mel, output_length)
coarse_mel = torch.where(sequence_mask, coarse_mel, 0)
refined_mel = torch.where(sequence_mask, refined_mel, 0)
return refined_mel, coarse_mel, output_length
@dataclass
class OmniAudioDecoderOutput(ModelOutput):
refined_mel: Optional[torch.FloatTensor] = None
coarse_mel: Optional[torch.FloatTensor] = None
mel_length: Optional[torch.Tensor] = None
hidden_states_before_dconv2: Optional[torch.FloatTensor] = None
output_length_before_dconv2: Optional[torch.Tensor] = None
class OmniAudioDecoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config.audio_config
self.vocoder_config = config.vocoder_config
self.max_source_positions = self.config.max_audio_seconds * self.config.sampling_rate // self.config.hop_length
self.dconv1 = CasualConvTranspose1d(
self.config.d_model,
self.config.d_model,
self.config.decoder_kernel_size,
self.config.avg_pooler,
)
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, self.config.d_model))
# causal transformer layers
self.layers = nn.ModuleList(
[OmniWhisperTransformerLayer(
ACT2FN[self.config.activation_function],
self.config.d_model,
self.config.decoder_attention_heads,
self.config.decoder_ffn_dim,
True # causal
) for _ in range(self.config.decoder_layers)
])
self.layer_norm = nn.LayerNorm(self.config.d_model)
self.dconv2 = CasualConvTranspose1d(
self.config.d_model,
self.vocoder_config.num_mel_bins,
self.config.decoder_kernel_size,
self.config.decoder_stride_size
)
self.post_net = MelSpecRefineNet(config.audio_config, config.vocoder_config)
self.gradient_checkpointing = True
@torch.no_grad()
def fake_input(self, device):
audio_embed = torch.rand([1, 10, self.config.d_model], dtype=torch.float32, device=device)
input_length = torch.ones([1], dtype=torch.int32, device=device) * 10
mel_labels_length = self.post_net.compute_output_length(input_length)
return audio_embed, input_length, None, mel_labels_length
def forward(self,
audio_embed,
input_length,
mel_labels=None,
mel_labels_length=None,
fake_input=False,
):
if fake_input:
audio_embed, input_length, mel_labels, mel_labels_length = self.fake_input(self.layer_norm.weight.device)
assert (audio_embed.shape[-1] == self.config.d_model)
audio_embed = audio_embed.to(self.layer_norm.weight) # device and type
audio_embed, output_length = self.dconv1(audio_embed, input_length, output_dim=3) # (b, l*2, d_model)
_, tgt_len, _ = audio_embed.size()
if tgt_len < self.positional_embedding.shape[0]:
current_positional_embedding = self.positional_embedding[:tgt_len]
else:
current_positional_embedding = self.positional_embedding
hidden_states = (audio_embed.to(torch.float32) + current_positional_embedding).to(audio_embed.dtype)
# packing hidden states
attention_mask, _ = get_sequence_mask(hidden_states, output_length)
hidden_states = torch.masked_select(hidden_states, attention_mask).view(torch.sum(output_length), self.config.d_model)
for idx, encoder_layer in enumerate(self.layers):
hidden_states = encoder_layer(hidden_states, output_length)
hidden_states = self.layer_norm(hidden_states)
hidden_states_before_dconv2 = hidden_states
output_length_before_dconv2 = output_length
coarse_mel, output_length = self.dconv2(hidden_states, output_length, output_dim=3)
refined_mel, coarse_mel, mel_labels_length = self.post_net(coarse_mel, output_length, mel_labels_length)
return OmniAudioDecoderOutput(
refined_mel=refined_mel,
coarse_mel=coarse_mel,
mel_length=mel_labels_length,
hidden_states_before_dconv2=hidden_states_before_dconv2,
output_length_before_dconv2=output_length_before_dconv2,
)
class OmniAudioVQBridgeTokenizer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config.audio_config
self.gradient_checkpointing = False
self.intermediate_dim = self.config.d_model * self.config.avg_pooler
self.gate_proj = nn.Conv1d(self.config.d_model, self.intermediate_dim, self.config.avg_pooler, self.config.avg_pooler, bias=False)
self.up_proj = nn.Conv1d(self.config.d_model, self.intermediate_dim, self.config.avg_pooler, self.config.avg_pooler, bias=False)
self.down_proj = nn.Linear(self.intermediate_dim, self.intermediate_dim, bias=False)
self.act_fn = ACT2FN['silu']
self.layer_norm = nn.LayerNorm(self.intermediate_dim)
self.proj_decoder = nn.Linear(self.intermediate_dim, self.config.d_model)
self.vq_list = nn.ModuleList([])
for idx, codebook_size in enumerate(self.config.vq_config.codebook_sizes):
vq_config = copy.deepcopy(self.config.vq_config)
vq_config.dim = self.intermediate_dim
vq_config.codebook_size = codebook_size
self.vq_list.append(VectorQuantize(vq_config))
for vq_layer in self.vq_list:
deepspeed.zero.register_external_parameter(self, vq_layer.codebook.embed)
def rvq_op(self, inputs, output_length):
def rvq_layer_op(vq_layer, residual_encoding, output_length):
q_v_i, code_ids_i = vq_layer(residual_encoding, output_length)
residual_encoding = residual_encoding.float() - q_v_i.float()
residual_encoding = residual_encoding.to(inputs.dtype)
return residual_encoding, code_ids_i
cmt_loss, residual_encoding = 0, inputs
code_ids_list = []
for i, vq_layer in enumerate(self.vq_list):
residual_encoding, code_ids_i = rvq_layer_op(vq_layer, residual_encoding, output_length)
code_ids_list.append(code_ids_i)
return torch.stack(code_ids_list, -1)
def forward(self, x, output_length):
batch_size, _, _ = x.shape
output_length = output_length.to(x.device)
if x.shape[1] % self.config.avg_pooler != 0:
x = F.pad(x, (0, 0, 0, self.config.avg_pooler - x.shape[1] % self.config.avg_pooler), "constant", 0)
xt = x.permute(0, 2, 1)
g = self.gate_proj(xt).permute(0, 2, 1) # (bs, sl//poolersizre+1, d*2)
u = self.up_proj(xt).permute(0, 2, 1)
x = x.reshape(batch_size, -1, self.intermediate_dim) # (bs, sl//poolersizre+1, d*2)
c = self.down_proj(self.act_fn(g) * u)
res = self.layer_norm(c + x)
valid_mask, _ = get_sequence_mask(res, output_length)
code_ids = self.rvq_op(res, output_length)
code_ids = torch.masked_select(code_ids, valid_mask).reshape(-1, len(self.vq_list)) # (sum(valid_sequence_length), vq_num)
return code_ids
@torch.no_grad()
def decode(self, code_ids):
vq_num = code_ids.shape[-1]
res = sum(self.vq_list[i].get_output_from_indices(code_ids[:, i]).float() for i in range(vq_num-1,-1,-1)).to(self.proj_decoder.weight)
decoder_emb = self.proj_decoder(res.to(self.proj_decoder.weight))
return decoder_emb
@torch.no_grad()
def recover(self, code_ids):
vq_num = code_ids.shape[-1]
res = sum(self.vq_list[i].get_output_from_indices(code_ids[:, i]).float() for i in range(vq_num-1,-1,-1)).to(self.proj_decoder.weight)
return res
class FlowmatchingPrenet(nn.Module):
def __init__(
self,
input_feat_dim,
out_feat_dim,
d_model,
attention_heads,
ffn_dim,
nlayers,
activation_function,
max_source_positions,
target_mel_length_scale_ratio,
):
super().__init__()
self.d_model = d_model
self.target_mel_length_scale_ratio = target_mel_length_scale_ratio
self.gradient_checkpointing = False
self.register_buffer(
"positional_embedding", sinusoids(max_source_positions, d_model)
)
self.in_mlp = nn.Sequential(
nn.Linear(input_feat_dim, d_model * 4),
nn.SiLU(),
nn.Linear(d_model * 4, d_model),
)
self.transformer_layers = nn.ModuleList(
[
OmniWhisperTransformerLayer(
act=ACT2FN[activation_function],
d_model=d_model,
encoder_attention_heads=attention_heads,
encoder_ffn_dim=ffn_dim,
causal=True, # causal
ln_type="RMSNorm",
)
for _ in range(nlayers)
]
)
self.final_norm = RMSNorm(self.d_model)
self.out_proj = nn.Linear(d_model, out_feat_dim, bias=False)
def compute_output_length(self, input_length):
output_length = input_length.float() * self.target_mel_length_scale_ratio
return output_length.to(torch.int64)
def forward(self, input_feat, input_length, output_length=None):
"""
Args:
input_feat: [B, T, input_feat_dim]
input_length: [B]
output_length: [B]
"""
if output_length is None or not self.training:
output_length = self.compute_output_length(input_length)
input_feat = input_feat[:, : input_length.max(), :] # [B, T, D]
orig_dtype = input_feat.dtype
input_feat = F.interpolate(
input=input_feat.to(torch.float32).transpose(1, 2).contiguous(),
size=output_length.max(),
mode="nearest",
).to(orig_dtype)
input_feat = input_feat.transpose(1, 2).contiguous() # [B, T, D]
hidden_states = self.in_mlp(input_feat)
# packing hidden states
bsz, tgt_len, d_model = hidden_states.shape
attention_mask, unpacking_index = get_sequence_mask(
hidden_states, output_length
)
hidden_states = torch.masked_select(hidden_states, attention_mask).view(
torch.sum(output_length), self.d_model
)
for idx, encoder_layer in enumerate(self.transformer_layers):
hidden_states = encoder_layer(hidden_states, output_length)
# unpacking
hidden_states = torch.index_select(hidden_states, 0, unpacking_index).view(
bsz, tgt_len, d_model
)
hidden_states = torch.where(attention_mask, hidden_states, 0)
hidden_states = self.final_norm(hidden_states)
output = self.out_proj(hidden_states)
return output, output_length
@dataclass
class OmniAudioFlowMatchingDecoderOutput(ModelOutput):
flow_matching_mel: Optional[torch.FloatTensor] = None
flow_matching_mel_lengths: Optional[torch.FloatTensor] = None
class OmniAudioFlowMatchingDecoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config.flow_matching_config
self.in_channels = self.config.in_channels
self.spk_emb_dim = self.config.spk_emb_dim
self.diffusion_steps = self.config.diffusion_steps
self.cal_mel_mae = self.config.cal_mel_mae
self.forward_step = -1
self.prenet = FlowmatchingPrenet(
input_feat_dim=self.config.prenet_in_dim,
out_feat_dim=self.config.prenet_out_dim,
d_model=self.config.prenet_d_model,
attention_heads=self.config.prenet_attention_heads,
ffn_dim=self.config.prenet_ffn_dim,
nlayers=self.config.prenet_nlayers,
activation_function=self.config.prenet_activation_function,
max_source_positions=self.config.prenet_max_source_positions,
target_mel_length_scale_ratio=self.config.prenet_target_mel_length_scale_ratio,
)
self.conditional_decoder = ConditionalDecoder(
in_channels=self.in_channels * 2 + self.spk_emb_dim,
out_channels=self.in_channels,
causal=True,
channels=self.config.channels,
dropout=self.config.dropout,
attention_head_dim=self.config.attention_head_dim,
n_blocks=self.config.n_blocks,
num_mid_blocks=self.config.num_mid_blocks,
num_heads=self.config.num_heads,
act_fn=self.config.act_fn,
)
self.cfm = ConditionalCFM(
in_channels=self.in_channels,
cfm_params=self.config.cfm_params,
n_spks=0,
spk_emb_dim=self.spk_emb_dim,
)
def unpack_hidden_states(self, hidden_states, output_length):
unpacked = unpack_hidden_states(hidden_states, output_length)
return unpacked, output_length
def forward(
self, refined_mel, input_length, mel_labels=None, mel_labels_length=None
):
"""
:param refined_mel: [bs, max_input_len, mel_bin]
:param input_length: [batch_size]
:param refined_mel: [bs, mel_bin, max_input_len]
:return:
"""
self.forward_step += 1
orig_dtype = refined_mel.dtype
prenet_mae_metric = torch.tensor(0.0).to(refined_mel.device)
prenet_regression_loss = torch.tensor(0.0).to(refined_mel.device)
if self.prenet is not None:
refined_mel = refined_mel[:, : torch.max(input_length), :]
if mel_labels_length is None:
mel_labels_length = self.prenet.compute_output_length(input_length)
refined_mel, input_length = self.prenet(
refined_mel, input_length, mel_labels_length
)
float_dtype = refined_mel.dtype
refined_mel = refined_mel.float()
input_length = input_length.long()
refined_mel = refined_mel[:, : torch.max(input_length), :]
sequence_mask, unpacking_index = get_sequence_mask(refined_mel, input_length)
refined_mel = refined_mel.transpose(1, 2) # (bs, mel_bin, max_input_len)
sequence_mask = sequence_mask.transpose(2, 1) # (bs, 1, sl)
fm_mel = self.cfm.forward(
estimator=self.conditional_decoder,
mu=refined_mel.to(float_dtype),
mask=sequence_mask.float(),
n_timesteps=self.diffusion_steps,
)
return OmniAudioFlowMatchingDecoderOutput(
flow_matching_mel=fm_mel.transpose(1, 2),
flow_matching_mel_lengths=mel_labels_length,
)
|