File size: 31,359 Bytes
0fad588
 
 
 
 
 
 
 
 
 
 
250460a
0fad588
 
 
250460a
 
 
 
0fad588
250460a
0fad588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af7125e
0fad588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e3eab
 
 
 
 
 
 
 
 
 
 
 
0fad588
 
 
 
 
d3e3eab
0fad588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c96887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fad588
 
9c96887
0fad588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c96887
0fad588
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
---
license: apache-2.0
---
<div align="center">

<img src="https://github.com/baichuan-inc/Baichuan-Omni-1.5/raw/main/assets/logo.png" width="300em" ></img> 

<!-- <img src="https://raw.githubusercontent.com/baichuan-inc/Baichuan-Omni-1.5/refs/heads/main/assets/logo.png" width="300em" ></img> 
<img src="https://github.com/baichuan-inc/Baichuan-Omni-1.5/raw/main/assets/train-pipeline.png" width="300em" ></img> -->
<!-- <img src="https://github.com/OpenBMB/MiniCPM-o/raw/main/assets/minicpm-o-26-framework-v2.png" width="300em" ></img>  -->

**Open-source Omni-modal Foundation Model Supporting Text, Image, Video, and Audio Inputs as Well as Text and Audio Outputs**

 
  
<p align="center">
  Baichuan-Omni-1.5 <a href="https://huggingface.co/baichuan-inc/Baichuan-Omni-1d5">🤗</a> | Baichuan-Omni-1.5-Base <a href="https://huggingface.co/baichuan-inc/Baichuan-Omni-1d5-Base">🤗</a>  |Github <a href="https://github.com/baichuan-inc/Baichuan-Omni-1.5/">📖 </a> | Report <a href="https://github.com/baichuan-inc/Baichuan-Omni-1.5/raw/main/baichuan_omni_1_5.pdf">📖</a> 
</p>
</p>
  <p align="center">
    OpenMM-Medical <a href="https://huggingface.co/datasets/baichuan-inc/OpenMM-Medical">🤗</a> | OpenAudioBench <a href="https://huggingface.co/datasets/baichuan-inc/OpenAudioBench">🤗</a> 
</p>
</div>


<!-- ## 介绍
**Baichuan-Omni-1.5** 是从 Baichuan-omni 升级的最新的、端到端训练的、支持全模态输入/双模态输出的多模态大模型。该模型使用Qwen2.5-7B昨晚大语言模型基座,可以以端到端方式,接受图像、视频、文本、音频作为输入,并且以可控的方式生成高质量文本和语音。

- **Baichuan-Omni-1.5-Base**: 为促进全模态大模型发展,我们开源了使用高质量海量数据训练的全模态基座模型。该模型未经SFT指令微调,可塑性强,是**业内首个**开源的**全模态基座模型**- **Baichuan-Omni-1.5**: 基于性能强悍的Baichuan-Omni-1.5-base,使用高质量的全模态对齐数据,进行端到端的多模态指令数据训练。Baichuan-Omni-1.5的纯文本、图像、视频、音频理解能力达到了 GPT-4o-mini 级别。可控音频生成的能力十分强大,在xxx和xxx评测集上取得最高表现。 -->


## Baichuan-Omni-1.5

The Baichuan-Omni-1.5 is the latest, top-performing model in the Baichuan-omni series. This model is trained and inferred in an end-to-end manner. Compared with Baichuan-omni, this model has significant improvements in text/image/audio/video understanding and text/audio generation, and supports new features such as controllable real-time voice conversations and multi-modal real-time interactions. The main features of Baichuan-Omni-1.5 include:

- 🔥 **Possess Multimodal Understanding and Interaction Capabilities.**
Baichuan-Omni-1.5 not only supports images, videos, text, and audio as input, and generates high-quality text and voice output, but also **supports continuous video and audio streaming, and real-time voice interaction with users**. In OminiBench, a comprehensive evaluation benchmark for omnimodal understanding, Baichuan-Omni-1.5 has achieved the first-class level of the open source community and surpassed GPT-4o-mini.

- 💪 **Strong Visual Capability.**
Baichuan-Omni-1.5 has an average score of 73.3 on the OpenCompass list (comprehensive 10 mainstream multimodal evaluation benchmarks). **With the size of 7B, it surpasses mainstream commercial closed-source multimodal large models such as GPT-4o-mini, Gemini 1.5 Pro and Claude 3.5 Sonnet in single-image understanding**. In addition, its video understanding performance is also better than GPT-4V and Claude 3.5 Sonnet and open source omnimodal models.

- 🚀 **Leading Medical Image Understanding Capabilities.**
Baichuan-Omni-1.5 achieved the best performance on GMAI-MMBench and Openmm-Medical. Using only 7B LLM, the average score exceeded Qwen2-VL-72b by 3%, i.e. 80.7% v.s 83.8%.

- 🎙 **Excellent Voice Capabilities.**
Baichuan-Omni-1.5 **supports high-quality, controllable voice bilingual real-time conversations in Chinese and English**. It **outperforms GPT-4o-realtime** in speech understanding tasks (such as ASR and STT, etc.), and demonstrates **the highest speech generation performance among open source models** in semantic and acoustic evaluation of voice conversations. 

- 🎬 **Powerful Real-world Understanding and Other Features.**
Baichuan-Omni-1.5 further optimizes the many visual understanding capabilities of Baichuan-omni. It can process images of any aspect ratio and up to 1.8 million pixels (such as 1344x1344). It scored 68.8 points on RealWorldQA, **surpassing commercial closed-source models such as GPT-4o-mini** and recently open-sourced omnimodal models. It scored 85.6/83.6 on the English/Chinese evaluation subsets of MMBench, respectively, which is also in the first echelon of models with the same size.

- 💫  **Provides [🤗 Base Model](https://huggingface.co/baichuan-inc/Baichuan-Omni-1d5-Base) and [🤗 Instruct Model](https://huggingface.co/baichuan-inc/Baichuan-Omni-1d5).**
Baichuan-Omni-1.5-Base is a high-performance foundational omni-modal model in the industry. Based on the powerful base, Baichuan-Omni-1.5 employs high-quality omnimodal alignment data to perform end-to-end multimodal instruction data training.

**Model Architecture**
<div align="center">
<img src="https://github.com/baichuan-inc/Baichuan-Omni-1.5/raw/main/assets/train-pipeline.png", width=80%></img>
  
</div>

<br>

- **End-to-end Omni-modal Architecture.** We carefully design **multi-stage and end-to-end** progressive training of different modal encoding/decoding modules to make full use of the rich knowledge in different modalities, we expect different modal knowledge to complement each other.
Notably, the model is fully trained end-to-end using NTP loss in the whole pre-training stage.
- **High-quality Controllable Audio Solution.** Multimodal system prompts have been redesigned to include traditional text system prompts and **speech system prompts** for specifying model sounds. It provides the flexibility to control voice style through text or speech samples at inference time, and supports advanced capabilities such as end-to-end voice cloning and timbre creation.


### Open-source Evaluation Datasets

**OpenMM-Medical**

To comprehensively evaluate the model's multi-modal medical capabilities, we have constructed OpenMM-Medical, which includes data from 42 publicly available medical image datasets such as ACRIMA (retinal images), BioMediTech (microscope images), and CoronaHack (X-rays), totaling 88,996 images.

**OpenAudioBench**

To efficiently assess the model's "IQ" issues, we developed OpenAudioBench, comprising five end-to-end audio understanding sub-datasets: four public benchmarks (Llama Question, WEB QA, TriviaQA, AlpacaEval), and an internally created speech logical reasoning dataset by the Baichuan team, totaling 2,701 entries. This suite reflects the model's comprehensive "IQ" level.

<!-- **High-quality Medical Image Evaluation Dataset--Openmm-Medical**

- We have built a more diverse medical evaluation dataset named **Openmm-Medical** to evaluate large models in medical scenarios.
- The images in Openmm-Medical come from **42 public medical image datasets**, such as ACRIMA (fundus images), BioMediTech (microscope images), and CoronaHack (X-rays).
- **Openmm-Medical contains a total of 88,996 images**, and each image is designed as a **multiple-choice question to facilitate the evaluation of different large models.**
- To promote the development of omnimodal large models in the medical field, we will soon **open** this evaluation dataset.
 -->

### Evaluation

We sugguest readers to refer to our [**Github**](https://github.com/baichuan-inc/Baichuan-Omni-1.5/) for more details. 

<div align="center">
<img src="https://github.com/baichuan-inc/Baichuan-Omni-1.5/raw/main/assets/performance.png" , width=80%>
</div>

<br>

<details>

<summary>click to view</summary>

#### Pure Text Understanding
<div align="center">
    <table style="margin: 0 auto; text-align: center;">
    <thead>
        <tr>
            <th class="tg-c3ow" colspan="7">Comprehensive Tasks</th>
        </tr>
    </thead>
    <tbody>
    <tr>
        <td>Model</td>
        <td>Size</td>
        <td>MMLU (Acc.)</td>
        <td>CMMLU (Acc.)</td>
        <td>AGIEval (Acc.)</td>
        <td>C-Eval (Acc.)</td>
        <td>GAOKAO (Acc.)</td>
    </tr>
    <tr>
        <td colspan="7">Proprietary Models</td>
    </tr>
    <tr>
        <td>GPT 4o</td>
        <td>-</td>
        <td><b>88.0♢<br></td>
        <td><b>78.3♢<br></td>
        <td><b>62.3♢<br></td>
        <td><b>86.0♢<br></td>
        <td>-</td>
    </tr>
    <tr>
        <td>GPT 4o mini</td>
        <td>-</td>
        <td>82.0</td>
        <td>67.6</td>
        <td>52.2</td>
        <td>63.6</td>
        <td>70.8</td>
    </tr>
    <tr>
         <td colspan="7">Open-source Models (Pure text)</td>
    </tr>
    <tr>
        <td>MAP-Neo</td>
        <td>7B</td>
        <td>58.2</td>
        <td>55.1</td>
        <td>33.9</td>
        <td>57.5</td>
        <td>-</td>
    </tr>
    <tr>
        <td>Qwen1.5-Chat</td>
        <td>7B</td>
        <td>61.5</td>
        <td>68.0</td>
        <td>39.3</td>
        <td>68.8</td>
        <td>-</td>
    </tr>
    <tr>
        <td>Llama3-Instruct</td>
        <td>8B</td>
        <td>67.1</td>
        <td>51.7</td>
        <td>38.4</td>
        <td>50.7</td>
        <td>-</td>
    </tr>
    <tr>
        <td>OLMo</td>
        <td>7B</td>
        <td>28.4</td>
        <td>25.6</td>
        <td>19.9</td>
        <td>27.3</td>
        <td>-</td>
    </tr>
    <tr>
         <td colspan="7">Open-source Models (Omni-modal)</td>
    </tr>
    <tr>
        <td>VITA</td>
        <td>8x7B</td>
        <td>71.0*</td>
        <td>46.6</td>
        <td>46.2*</td>
        <td>56.7*</td>
        <td>-</td>
    </tr>
    <tr>
        <td>VITA-1.5</td>
        <td>7B</td>
        <td>71.0</td>
        <td>75.1</td>
        <td>47.9</td>
        <td>65.6</td>
        <td>57.4</td>
    </tr>
    <tr>
        <td>Baichuan-Omni</td>
        <td>7B</td>
        <td>65.3</td>
        <td>72.2</td>
        <td>47.7</td>
        <td>68.9</td>
        <td>-</td>
    </tr>
    <tr>
        <td>MiniCPM-o 2.6</td>
        <td>7B</td>
        <td>65.3</td>
        <td>63.3</td>
        <td>50.9</td>
        <td>61.5</td>
        <td>56.3</td>
    </tr>
    <tr>
        <td><b>Baichuan-Omni-1.5<br></td>
        <td>7B</td>
        <td>72.2</td>
        <td>75.5</td>
        <td>54.4</td>
        <td>73.1</td>
        <td><b>73.5<br></td>
    </tr>
    </tbody>
    </table>
</div>

</details>


<details>

<summary>click to view</summary>

#### Image Understanding

<div align="center">
  <table style="margin: 0 auto; text-align: center;">
    <thead>
      <tr>
         <th class="tg-c3ow" colspan="9">Multi-choice &amp; Yes-or-No Question</th>
      </tr>
    </thead>
    <tbody>
      <tr>
        <td>Model</td>
        <td>Size</td>
        <td>MMBench-EN (Acc.)</td>
        <td>MMbench-CN (Acc.)</td>
        <td>SEED-IMG (Acc.)</td>
        <td>MMMU-val (Acc.)</td>
        <td>HallusionBench (Acc.)</td>
      </tr>
      <tr>
        <td colspan="9">Proprietary Models</td>
      </tr>
      <tr>
        <td>GPT-4o</td>
        <td>-</td>
        <td>83.4♢</td>
        <td>82.1♢</td>
        <td>-</td>
        <td><b>69.1♢<br></td>
        <td><b>55.0♢<br></td>
      </tr>
      <tr>
        <td>GPT-4o-mini</td>
        <td>-</td>
        <td>77.7</td>
        <td>76.9</td>
        <td>72.3</td>
        <td>60.0♢</td>
        <td>46.1♢</td>
      </tr>
      <tr>
        <td colspan="9">Open Source Models (Vision-Language)</td>
      </tr>
      <tr>
        <td>Qwen2-VL-7B</td>
        <td>7B</td>
        <td><b>86.4<br></td>
        <td>81.9</td>
        <td><b>76.5<br></td>
        <td>52.7</td>
        <td>50.6∗</td>
      </tr>
      <tr>
        <td>MiniCPM-Llama3-V 2.5</td>
        <td>8B</td>
        <td>76.7</td>
        <td>73.3</td>
        <td>72.4</td>
        <td>45.8∗</td>
        <td>42.5</td>
      </tr>
      <tr>
        <td colspan="9">Open Source Models (Omni-modal)</td>
      </tr>
      <tr>
        <td>VITA</td>
        <td>8x7B</td>
        <td>74.7</td>
        <td>71.4</td>
        <td>72.6</td>
        <td>45.3</td>
        <td>39.7∗</td>
      </tr>
      <tr>
        <td>VITA-1.5</td>
        <td>7B</td>
        <td>80.8</td>
        <td>80.2</td>
        <td>74.2</td>
        <td>53.1</td>
        <td>44.1</td>
      </tr>
      <tr>
        <td>Baichuan-Omni</td>
        <td>7B</td>
        <td>76.2</td>
        <td>74.9</td>
        <td>74.1</td>
        <td>47.3</td>
        <td>47.8</td>
      </tr>
      <tr>
        <td>MiniCPM-o 2.6</td>
        <td>7B</td>
        <td>83.6</td>
        <td>81.8</td>
        <td>75.4</td>
        <td>51.1</td>
        <td>50.1</td>
      </tr>
      <tr>
        <td><b>Baichuan-Omni-1.5<br></td>
        <td>7B</td>
        <td>85.6</td>
        <td><b>83.6<br></td>
        <td>75.7</td>
        <td>53.9</td>
        <td>49.7</td>
      </tr>
    </tbody>
  </table>
</div>


<br>

<div align="center">
  <table style="margin: 0 auto; text-align: center;">
    <thead>
      <tr>
        <th class="tg-c3ow" colspan="9">Visual Question Answering</th>
      </tr>
    </thead>
    <tbody>
      <tr>
        <td>Model</td>
        <td>Size</td>
        <td>RealWorldQA (Acc.)</td>
        <td>MathVista-mini (Acc.)</td>
        <td>TextVQA-val (Acc.)</td>
        <td>ChartQA (Acc.)</td>
        <td>OCRBench (Acc.)</td>
      </tr>
      <tr>
        <td colspan="8">Proprietary Models</td>
      </tr>
      <tr>
        <td>GPT-4o</td>
        <td>-</td>
        <td><b>75.4♢<br></td>
        <td>63.8♢</td>
        <td>-</td>
        <td>85.7♢</td>
        <td>73.6♢</td>
      </tr>
      <tr>
        <td>GPT-4o-mini</td>
        <td>-</td>
        <td>66.3</td>
        <td>53.4</td>
        <td>66.8</td>
        <td>-</td>
        <td>77.4</td>
      </tr>
      <tr>
        <td colspan="8">Open Source Models (Vision-Language)</td>
      </tr>
      <tr>
        <td>Qwen2-VL-7B</td>
        <td>7B</td>
        <td>69.7</td>
        <td>58.2∗</td>
        <td><b>84.3∗<br></td>
        <td>83.0∗</td>
        <td>84.5∗</td>
      </tr>
      <tr>
        <td>MiniCPM-Llama3-V 2.5</td>
        <td>8B</td>
        <td>63.5</td>
        <td>54.3∗</td>
        <td>76.6</td>
        <td>72.0</td>
        <td>72.5</td>
      </tr>
      <tr>
        <td colspan="8">Open Source Models (Omni-modal)</td>
      </tr>
      <tr>
        <td>VITA</td>
        <td>8x7B</td>
        <td>59.0</td>
        <td>44.9∗</td>
        <td>71.8</td>
        <td>76.6</td>
        <td>68.5∗</td>
      </tr>
      <tr>
        <td>VITA-1.5</td>
        <td>7B</td>
        <td>66.8</td>
        <td><b>66.5<br></td>
        <td>74.9</td>
        <td>79.6</td>
        <td>73.3</td>
      </tr>
      <tr>
        <td>Baichuan-Omni</td>
        <td>7B</td>
        <td>62.6</td>
        <td>51.9</td>
        <td>74.3</td>
        <td>79.6</td>
        <td>70.0</td>
      </tr>
      <tr>
        <td>MiniCPM-o 2.6</td>
        <td>7B</td>
        <td>67.7</td>
        <td>64.6</td>
        <td>80.1</td>
        <td><b>87.6<br></td>
        <td><b>89.7∗<br></td>
      </tr>
       <tr>
        <td>Baichuan-Omni-1.5 </td>
        <td>7B</td>
        <td>68.8</td>
        <td>63.6</td>
        <td>83.2</td>
        <td>84.9</td>
        <td>84.0</td>
      </tr>
    </tbody>
  </table>
</div>


</details>

<details>

<summary>click to view</summary>

#### Video Understanding
<div align="center">
  <table style="margin: 0 auto; text-align: center;">
    <thead>
      <tr>
        <th colspan="7">General VQA&nbsp;&nbsp;&nbsp;</th>
      </tr>
    </thead>
    <tbody>
      <tr>
        <td>Model</td>
        <td>Size</td>
        <td># Frames</td>
        <td>MVBench (Acc.)</td>
        <td>Egoschema (Acc.)</td>
        <td>VideoMME (Acc.)</td>
        <td>Perception-Test (Acc.)</td>
      </tr>
      <tr>
        <td colspan="7">Proprietary Models</td>
      </tr>
      <tr>
        <td>Gemini 1.5 Pro</td>
        <td>-</td>
        <td>-</td>
        <td><b>81.3♢<br></td>
        <td>63.2*</td>
        <td><b>75.0♢<br></td>
        <td>-</td>
      </tr>
      <tr>
        <td>GPT 4o mini</td>
        <td>-</td>
        <td>-</td>
        <td>55.2</td>
        <td>58.5</td>
        <td>63.6</td>
        <td>48.2</td>
      </tr>
      <tr>
        <td>GPT 4o</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td><b>77.2*<br></td>
        <td>71.9♢</td>
        <td>-</td>
      </tr>
      <tr>
        <td>GPT 4V</td>
        <td>-</td>
        <td>-</td>
        <td>43.7♢</td>
        <td>55.6*</td>
        <td>59.9♢</td>
        <td>-</td>
      </tr>
      <tr>
        <td colspan="7">Open-source Models (Vision-language)</td>
      </tr>
      <tr>
        <td>Qwen2-VL-7B</td>
        <td>7B</td>
        <td>2 fps (max 768)</td>
        <td>67.0* | 64.4</td>
        <td>66.7* | 66.6</td>
        <td>63.3* | 59.0</td>
        <td>62.3* | 60.3</td>
      </tr>
      <tr>
        <td>AnyGPT</td>
        <td>8B</td>
        <td>48</td>
        <td>33.2</td>
        <td>32.1</td>
        <td>29.8</td>
        <td>29.1</td>
      </tr>
      <tr>
        <td>VideoLLaMA 2</td>
        <td>7B</td>
        <td>16</td>
        <td>54.6*</td>
        <td>51.7*</td>
        <td>46.6*</td>
        <td>51.4*</td>
      </tr>
      <tr>
        <td>VideoChat2</td>
        <td>7B</td>
        <td>16</td>
        <td>51.1*</td>
        <td>42.1♢</td>
        <td>33.7♢</td>
        <td>47.3♢</td>
      </tr>
      <tr>
        <td>LLaVA-NeXT-Video</td>
        <td>7B</td>
        <td>32</td>
        <td>46.5♢</td>
        <td>43.9♢</td>
        <td>33.7♢</td>
        <td>48.8♢</td>
      </tr>
      <tr>
        <td>Video-LLaVA</td>
        <td>7B</td>
        <td>8</td>
        <td>41.0♢</td>
        <td>38.4♢</td>
        <td>39.9♢</td>
        <td>44.3♢</td>
      </tr>
      <tr>
        <td colspan="7">Open-source Models (Omni-modal)</td>
      </tr>
      <tr>
        <td>VITA</td>
        <td>8x7B</td>
        <td>1 fps (max 32)</td>
        <td>53.4</td>
        <td>53.9</td>
        <td>56.1</td>
        <td>56.2</td>
      </tr>
      <tr>
        <td>VITA-1.5</td>
        <td>7B</td>
        <td>1 fps (max 32)</td>
        <td>55.5</td>
        <td>54.7</td>
        <td>57.3</td>
        <td>57.6</td>
      </tr>
      <tr>
        <td>Baichuan-Omni</td>
        <td>7B</td>
        <td>1 fps (max 32)</td>
        <td>60.9</td>
        <td>58.8</td>
        <td>58.2</td>
        <td>56.8</td>
      </tr>
      <tr>
        <td>MiniCPM-o 2.6</td>
        <td>7B</td>
        <td>1 fps (max 64)</td>
        <td>58.6</td>
        <td>50.7</td>
        <td>63.4</td>
        <td>66.6</td>
      </tr>
      <tr>
        <td>Baichuan-Omini-1.5</td>
        <td>7B</td>
        <td>1 fps (max 32)</td>
        <td> 63.7 </td>
        <td> 62.4 </td>
        <td> 60.1 </td>
        <td> <b>68.9 <br> </td>
      </tr>
    </tbody>
  </table>
</div>

<br>

<div align="center">
  <table style="margin: 0 auto; text-align: center;">
    <thead>
    <tr>
      <th colspan="7">Open-ended VQA</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="2">Model</td>
      <td rowspan="2">Size</td>
      <td rowspan="2"># Frames</td>
      <td colspan="2">ActivityNet-QA</td>
      <td colspan="2">MSVD-QA</td>
    </tr>
    <tr>
      <td>(Acc.)</td>
      <td>(Score)</td>
      <td>(Acc.)</td>
      <td>(Score)</td>
    </tr>
    <tr>
      <td colspan="7">Proprietary Models</td>
    </tr>
    <tr>
      <td>Gemini 1.5 Pro</td>
      <td>-</td>
      <td>-</td>
      <td>56.7*</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
    </tr>
    <tr>
      <td>GPT 4o mini</td>
      <td>-</td>
      <td>1 fps (max 32)</td>
      <td>62.1</td>
      <td>3.1</td>
      <td>67.5</td>
      <td>3.3</td>
    </tr>
    <tr>
      <td>GPT 4o</td>
      <td>-</td>
      <td>-</td>
      <td>61.9*</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
    </tr>
    <tr>
      <td>GPT 4V</td>
      <td>-</td>
      <td>-</td>
      <td>59.5*</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
    </tr>
    <tr>
      <td colspan="7">Open-source Models (Vision-language)</td>
    </tr>
    <tr>
      <td>Qwen2 VL</td>
      <td>7B</td>
      <td>2 fps (max 768)</td>
      <td>17.4</td>
      <td>1.9</td>
      <td>61.1</td>
      <td>3.5</td>
    </tr>
    <tr>
      <td>VideoLLaMA 2</td>
      <td>7B</td>
      <td>16</td>
      <td>50.2*</td>
      <td>3.3*</td>
      <td>70.9*</td>
      <td>3.8*</td>
    </tr>
    <tr>
      <td>VideoChat2</td>
      <td>7B</td>
      <td>16</td>
      <td>49.1*</td>
      <td>3.3*</td>
      <td>70.0*</td>
      <td>3.9*</td>
    </tr>
    <tr>
      <td>LLaVA-NeXT-Video</td>
      <td>7B</td>
      <td>32</td>
      <td>53.5*</td>
      <td>3.2*</td>
      <td>67.4</td>
      <td>3.4</td>
    </tr>
    <tr>
      <td>Video-LLaVA</td>
      <td>7B</td>
      <td>8</td>
      <td>45.3*</td>
      <td>3.3*</td>
      <td>70.7*</td>
      <td>3.9*</td>
    </tr>
    <tr>
      <td colspan="7">Open-source Models (Omni-modal)</td>
    </tr>
    <tr>
      <td>VITA</td>
      <td>8x7B</td>
      <td>1 fps (max 32)</td>
      <td>55.0</td>
      <td>3.5</td>
      <td>63.9</td>
      <td>3.7</td>
    </tr>
    <tr>
      <td>VITA-1.5</td>
      <td>7B</td>
      <td>1 fps (max 32)</td>
      <td>59.6</td>
      <td>3.0</td>
      <td>67.6</td>
      <td>3.3</td>
    </tr>
    <tr>
      <td>Baichuan-Omni</td>
      <td>7B</td>
      <td>1 fps (max 48)</td>
      <td>58.6</td>
      <td><b>3.7<br></td>
      <td>72.2</td>
      <td> <b>4.0<br> </td>
    </tr>
    <tr>
      <td>MiniCPM-o 2.6</td>
      <td>7B</td>
      <td>1 fps (max 64)</td>
      <td><b>63.0<br></td>
      <td>3.1</td>
      <td>73.7</td>
      <td>3.6</td>
    </tr>
    <tr>
      <td>Baichuan-Omni-1.5</td>
      <td>7B</td>
      <td>1 fps (max 48)</td>
      <td>  62.0</td>
      <td> 3.1</td>
      <td> <b> 74.2 <br></td>
      <td> 3.6</td>
    </tr>
  </tbody>
</table>
</div>

</details>


<details>

<summary>click to view</summary>

#### Audio Comprehensive and Speech Generation
<div align="center">
  <table style="margin: 0 auto; text-align: center;">
  <thead>
    <tr>
      <th colspan="12">Audio Comprehensive Capacity</th>
    </tr></thead>
  <tbody>
    <tr>
      <td rowspan="2">Model</td>
      <td rowspan="2">Size</td>
      <td colspan="2">Reasoning QA</td>
      <td colspan="2">Llama Questions</td>
      <td colspan="2">Web Questions</td>
      <td colspan="2">TriviaQA</td>
      <td colspan="2">AlpacaEval</td>
    </tr>
    <tr>
      <td>s→t</td>
      <td>s→s</td>
      <td>s→t</td>
      <td>s→s</td>
      <td>s→t</td>
      <td>s→s</td>
      <td>s→t</td>
      <td>s→s</td>
      <td>s→t</td>
      <td>s→s</td>
    </tr>
    <tr>
      <td colspan="12">Proprietary Models</td>
    </tr>
    <tr>
      <td>GPT-4o-Audio</td>
      <td>-</td>
      <td><b>55.6</td>
      <td>-</td>
      <td><b>88.4</td>
      <td>-</td>
      <td><b>8.10</td>
      <td>-</td>
      <td><b>9.06</td>
      <td>-</td>
      <td><b>8.01</td>
      <td>-</td>
    </tr>
    <tr>
      <td colspan="12">Open-source Models (Pure Audio)</td>
    </tr>
    <tr>
      <td>GLM-4-Voice</td>
      <td>9B</td>
      <td>-</td>
      <td>26.5</td>
      <td>-</td>
      <td>71.0</td>
      <td>-</td>
      <td>5.15</td>
      <td>-</td>
      <td>4.66</td>
      <td>-</td>
      <td>4.89</td>
    </tr>
    <tr>
      <td colspan="12">Open-source Models (Omni-modal)</td>
    </tr>
    <tr>
      <td>VITA-1.5</td>
      <td>7B</td>
      <td>41.0</td>
      <td>-</td>
      <td>74.2</td>
      <td>-</td>
      <td>5.73</td>
      <td>-</td>
      <td>4.68</td>
      <td>-</td>
      <td>6.82</td>
      <td>-</td>
    </tr>
    <tr>
      <td>MiniCPM-o 2.6</td>
      <td>7B</td>
      <td>38.6</td>
      <td>-</td>
      <td>77.8</td>
      <td>-</td>
      <td>6.86</td>
      <td>-</td>
      <td>6.19</td>
      <td>-</td>
      <td>5.18</td>
      <td>-</td>
    </tr>
    <tr>
      <td><b>Baichuan-Omni-1.5</td>
      <td>7B</td>
      <td>50.0</td>
      <td><b>40.9</td>
      <td>78.5</td>
      <td><b>75.3</td>
      <td>5.91</td>
      <td><b>5.52</td>
      <td>5.72</td>
      <td>5.31</td>
      <td>7.79</td>
      <td><b>6.94</td>
    </tr>
  </tbody>
  </table>
</div>


</details>



<details>

<summary>click to view</summary>

#### Omni-modal Understanding

<div align="center">
  <table style="margin: 0 auto; text-align: center;">
    <thead>
      <tr>
        <th colspan="7">Omni-Undesratnding </th>
      </tr>
    <thead>
    <tbody>
          <tr>
          <td>Model</td>
          <td>Size</td>
          <td>Image & Audio</td>
          <td>Image Caption & Audio</td>
          <td>Image & Audio Transcript</td>
          <td>Image Caption & Audio Transcript</td>
          </tr>
      </thead>
      <tr>
        <td colspan="6">Proprietary Models</td>
      </tr>
      <tr>
        <td>GPT4o-mini</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>37.0</td>
        <td>37.7</td>
      </tr>
      <tr>
        <td colspan="6">Open-source Models (Omni-modal)</td>
      </tr>
      <tr>
        <td>VITA</td>
        <td>8x7B</td>
        <td>33.1</td>
        <td>31.8</td>
        <td>42.0</td>
        <td>44.2</td>
      </tr>
      <tr>
        <td>VITA-1.5</td>
        <td>7B</td>
        <td>33.4</td>
        <td>29.6</td>
        <td>48.5</td>
        <td><b>47.2<br></td>
      </tr>
      <tr>
        <td>Baichuan-Omni</td>
        <td>7B</td>
        <td>32.2</td>
        <td>26.5</td>
        <td>42.6</td>
        <td>44.2</td>
      </tr>
      <tr>
        <td>MiniCPM-o 2.6</td>
        <td>7B</td>
        <td>40.5</td>
        <td>30.8</td>
        <td><b>53.2<br></td>
        <td>46.3</td>
      </tr>
      <tr>
        <td><b>Baichuan-Omni-1.5<br></td>
        <td>7B</td>
        <td><b>42.9<br></td>
        <td><b>37.7<br></td>
        <td>47.9</td>
        <td>46.9</td>
      </tr>
    </tbody>
  </table>
</div>

</details>

<details>

<summary>click to view</summary>

#### Medical Image Understanding Capabilities

<div align="center">
  <table style="margin: 0 auto; text-align: center;">
    <thead>
        <tr>
          <th colspan="7">Medical Understanding&nbsp;&nbsp;&nbsp;</th>
        </tr>
      </thead>
      <tbody>
          <tr>
          <td>Model</td>
          <td>Size</td>
          <td>GMAI-MMB-VAL (Acc.)</td>
          <td>OpenMM-Medical (Acc.)</td>
          </tr>
      </thead>
      <tr>
        <td colspan="4">Proprietary Models</td>
      </tr>
      <tr>
        <td>GPT4o-mini</td>
        <td>-</td>
        <td>46.4</td>
        <td>74.3</td>
      </tr>
      <tr>
        <td colspan="4">Open-source Models (Vision-Language)</td>
      </tr>
      <tr>
        <td>Qwen2 VL</td>
        <td>7B</td>
        <td>46.3</td>
        <td>76.9</td>
      </tr>
      <tr>
        <td>Qwen2 VL</td>
        <td>72B</td>
        <td><b>50.7<br></td>
        <td>80.7</td>
      </tr>
      <tr>
        <td colspan="4">Open-source Models (Omni-modal)</td>
      </tr>
      <tr>
        <td>VITA-1.5</td>
        <td>7B</td>
        <td>36.7</td>
        <td>67.1</td>
      </tr>
      <tr>
        <td>MiniCPM-o 2.6</td>
        <td>7B</td>
        <td>41.5</td>
        <td>73.6</td>
      </tr>
      <tr>
        <td><b>Baichuan-Omni-1.5<br></td>
        <td>7B</td>
        <td>49.9</td>
        <td><b>83.8<br></td>
      </tr>
    </tbody>
  </table>
</div>

</details>

## Examples
<br>

<div style="display: flex; flex-direction: column; align-items: center;">
  <img src="https://github.com/baichuan-inc/Baichuan-Omni-1.5/raw/main/assets/pipeline.png" alt="pipeline" style="margin-bottom: 5px;">
  <img src="https://github.com/baichuan-inc/Baichuan-Omni-1.5/raw/main/assets/math.png" alt="math" style="margin-bottom: 5px;">
  <img src="https://github.com/baichuan-inc/Baichuan-Omni-1.5/raw/main/assets/fly_bill.png" alt="fly_bill" style="margin-bottom: 5px;">
</div>


## 🚀 Quick Start
We recommend interested scholars to visit our github repo for more details. [**Github**](https://github.com/baichuan-inc/Baichuan-Omni-1.5/)


### Statement
- We hereby declare that our team has not developed any applications based on Baichuan-Omni-1.5/Baichuan-Omni-1.5-base models, not on iOS, Android, the web, or any other platform. We strongly call on all users not to use Baichuan-Omni-1.5/Baichuan-Omni-1.5-base models for any activities that harm national / social security or violate the law. Also, we ask users not to use Baichuan-Omni-1.5/Baichuan-Omni-1.5-base models for Internet services that have not undergone appropriate security reviews and filings. We hope that all users can abide by this principle and ensure that the development of technology proceeds in a regulated and legal environment.

- We have done our best to ensure the compliance of the data used in the model training process. However, despite our considerable efforts, there may still be some unforeseeable issues due to the complexity of the model and data. Therefore, if any problems arise due to the use of Baichuan-Omni-1.5/Baichuan-Omni-1.5-base open-source models, including but not limited to data security issues, public opinion risks, or any risks and problems brought about by the model being misled, abused, spread or improperly exploited, we will not assume any responsibility.



### License
The community usage of Baichuan-Omni-1.5/Baichuan-Omni-1.5-base requires adherence to [Apache 2.0](https://github.com/baichuan-inc/Baichuan-Omni-1.5/blob/main/LICENSE) and [Community License for Baichuan-Omni-1.5 Models](https://github.com/baichuan-inc/Baichuan-Omni-1.5/blob/main/LICENSE). The Baichuan-Omni-1.5/Baichuan-Omni-1.5-base models supports commercial use. If you plan to use the Baichuan-Omni-1.5/Baichuan-Omni-1.5-base models or its derivatives for commercial purposes, please ensure that your entity meets the following conditions:

  1. The Daily Active Users (DAU) of your or your affiliate's service or product is less than 1 million.
  2. Neither you nor your affiliates are software service providers or cloud service providers.
  3. There is no possibility for you or your affiliates to grant the commercial license given to you, to reauthorize it to other third parties without Baichuan's permission.

Upon meeting the above conditions, you need to submit the application materials required by the Baichuan-Omni-1.5 Model Community License Agreement via the following contact email: [email protected]. Once approved, Baichuan will hereby grant you a non-exclusive, global, non-transferable, non-sublicensable, revocable commercial copyright license.

<!-- ### Citation

If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
```bib
@article{
} -->
```