--- library_name: transformers language: - jv license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper - javanese - asr - generated_from_trainer datasets: - jv_id_asr_split metrics: - wer model-index: - name: Whisper-Tiny-Java-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: jv_id_asr_split type: jv_id_asr_split config: jv_id_asr_source split: None args: jv_id_asr_source metrics: - name: Wer type: wer value: 0.2586507557925852 --- # Whisper-Tiny-Java-v3 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the jv_id_asr_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2980 - Wer: 0.2587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.1788 | 0.0540 | 500 | 0.9671 | 0.6590 | | 0.8015 | 0.1081 | 1000 | 0.6977 | 0.5305 | | 0.6498 | 0.1621 | 1500 | 0.5725 | 0.6670 | | 0.5828 | 0.2161 | 2000 | 0.5094 | 0.4829 | | 0.5226 | 0.2702 | 2500 | 0.4642 | 0.3860 | | 0.4955 | 0.3242 | 3000 | 0.4341 | 0.3915 | | 0.4616 | 0.3782 | 3500 | 0.4128 | 0.3540 | | 0.4474 | 0.4323 | 4000 | 0.3900 | 0.3614 | | 0.4387 | 0.4863 | 4500 | 0.3736 | 0.3563 | | 0.4154 | 0.5403 | 5000 | 0.3606 | 0.3274 | | 0.419 | 0.5944 | 5500 | 0.3495 | 0.3144 | | 0.3799 | 0.6484 | 6000 | 0.3398 | 0.2922 | | 0.3802 | 0.7024 | 6500 | 0.3290 | 0.3044 | | 0.3611 | 0.7565 | 7000 | 0.3225 | 0.2823 | | 0.3548 | 0.8105 | 7500 | 0.3168 | 0.2733 | | 0.346 | 0.8645 | 8000 | 0.3105 | 0.2660 | | 0.3547 | 0.9186 | 8500 | 0.3063 | 0.2708 | | 0.3211 | 0.9726 | 9000 | 0.3019 | 0.2827 | | 0.2718 | 1.0267 | 9500 | 0.2990 | 0.2660 | | 0.2859 | 1.0807 | 10000 | 0.2980 | 0.2587 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.6.0+cu126 - Datasets 3.4.0 - Tokenizers 0.21.1