File size: 2,243 Bytes
5c39e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
language:
- jv
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper
- javanese
- asr
- generated_from_trainer
datasets:
- jv_id_asr_split
metrics:
- wer
model-index:
- name: Whisper Tiny Java
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: jv_id_asr_split
      type: jv_id_asr_split
      config: jv_id_asr_source
      split: validation
      args: jv_id_asr_source
    metrics:
    - name: Wer
      type: wer
      value: 0.6128141980376061
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Java

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the jv_id_asr_split dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8570
- Wer: 0.6128

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- training_steps: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.0753        | 0.0259 | 30   | 1.0360          | 0.7042 |
| 0.9233        | 0.0519 | 60   | 0.9441          | 0.6614 |
| 0.8769        | 0.0778 | 90   | 0.8938          | 0.6292 |
| 0.8629        | 0.1037 | 120  | 0.8660          | 0.6229 |
| 0.8423        | 0.1296 | 150  | 0.8570          | 0.6128 |


### Framework versions

- Transformers 4.50.0.dev0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0