--- library_name: transformers language: - jv license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper - javanese - asr - generated_from_trainer datasets: - jv_id_asr_split metrics: - wer model-index: - name: Whisper Tiny Java results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: jv_id_asr_split type: jv_id_asr_split config: jv_id_asr_source split: validation args: jv_id_asr_source metrics: - name: Wer type: wer value: 0.6624243173112566 --- # Whisper Tiny Java This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the jv_id_asr_split dataset. It achieves the following results on the evaluation set: - Loss: 1.0129 - Wer: 0.6624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - training_steps: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.1804 | 0.4110 | 30 | 1.8947 | 0.8897 | | 1.5393 | 0.8219 | 60 | 1.2656 | 0.7560 | | 1.1714 | 1.2329 | 90 | 1.1013 | 0.7068 | | 1.0264 | 1.6438 | 120 | 1.0346 | 0.6828 | | 0.9896 | 2.0548 | 150 | 1.0129 | 0.6624 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0