exec_date=2025-05-27T12:22:36.961936 -- model_name=microsoft/mpnet-base -- dataset_path=sentence-transformers/all-nli -- dataset_name=triplet -- train_size=1000
Browse files- README.md +31 -16
- model.safetensors +1 -1
README.md
CHANGED
@@ -8,7 +8,7 @@ tags:
|
|
8 |
- nli
|
9 |
- tutorial
|
10 |
- generated_from_trainer
|
11 |
-
- dataset_size:
|
12 |
- loss:MultipleNegativesRankingLoss
|
13 |
base_model: microsoft/mpnet-base
|
14 |
widget:
|
@@ -47,6 +47,16 @@ pipeline_tag: sentence-similarity
|
|
47 |
library_name: sentence-transformers
|
48 |
metrics:
|
49 |
- cosine_accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
model-index:
|
51 |
- name: microsoft/mpnet-base
|
52 |
results:
|
@@ -58,7 +68,7 @@ model-index:
|
|
58 |
type: all-nli-eval
|
59 |
metrics:
|
60 |
- type: cosine_accuracy
|
61 |
-
value: 0.
|
62 |
name: Cosine Accuracy
|
63 |
- task:
|
64 |
type: triplet
|
@@ -68,7 +78,7 @@ model-index:
|
|
68 |
type: all-nli-test
|
69 |
metrics:
|
70 |
- type: cosine_accuracy
|
71 |
-
value: 0.
|
72 |
name: Cosine Accuracy
|
73 |
---
|
74 |
|
@@ -171,7 +181,7 @@ You can finetune this model on your own dataset.
|
|
171 |
|
172 |
| Metric | all-nli-eval | all-nli-test |
|
173 |
|:--------------------|:-------------|:-------------|
|
174 |
-
| **cosine_accuracy** | **0.
|
175 |
|
176 |
<!--
|
177 |
## Bias, Risks and Limitations
|
@@ -192,7 +202,7 @@ You can finetune this model on your own dataset.
|
|
192 |
#### all-nli
|
193 |
|
194 |
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
195 |
-
* Size:
|
196 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
197 |
* Approximate statistics based on the first 1000 samples:
|
198 |
| | anchor | positive | negative |
|
@@ -370,17 +380,22 @@ You can finetune this model on your own dataset.
|
|
370 |
</details>
|
371 |
|
372 |
### Training Logs
|
373 |
-
| Epoch | Step |
|
374 |
-
|
375 |
-
| -1 | -1 |
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
### Framework Versions
|
386 |
- Python: 3.12.4
|
|
|
8 |
- nli
|
9 |
- tutorial
|
10 |
- generated_from_trainer
|
11 |
+
- dataset_size:1000
|
12 |
- loss:MultipleNegativesRankingLoss
|
13 |
base_model: microsoft/mpnet-base
|
14 |
widget:
|
|
|
47 |
library_name: sentence-transformers
|
48 |
metrics:
|
49 |
- cosine_accuracy
|
50 |
+
co2_eq_emissions:
|
51 |
+
emissions: 0.006544502824422758
|
52 |
+
energy_consumed: 0.00011678478960050603
|
53 |
+
source: codecarbon
|
54 |
+
training_type: fine-tuning
|
55 |
+
on_cloud: false
|
56 |
+
cpu_model: Apple M4
|
57 |
+
ram_total_size: 24.0
|
58 |
+
hours_used: 0.02
|
59 |
+
hardware_used: Apple M4
|
60 |
model-index:
|
61 |
- name: microsoft/mpnet-base
|
62 |
results:
|
|
|
68 |
type: all-nli-eval
|
69 |
metrics:
|
70 |
- type: cosine_accuracy
|
71 |
+
value: 0.621051013469696
|
72 |
name: Cosine Accuracy
|
73 |
- task:
|
74 |
type: triplet
|
|
|
78 |
type: all-nli-test
|
79 |
metrics:
|
80 |
- type: cosine_accuracy
|
81 |
+
value: 0.8116205334663391
|
82 |
name: Cosine Accuracy
|
83 |
---
|
84 |
|
|
|
181 |
|
182 |
| Metric | all-nli-eval | all-nli-test |
|
183 |
|:--------------------|:-------------|:-------------|
|
184 |
+
| **cosine_accuracy** | **0.6211** | **0.8116** |
|
185 |
|
186 |
<!--
|
187 |
## Bias, Risks and Limitations
|
|
|
202 |
#### all-nli
|
203 |
|
204 |
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
205 |
+
* Size: 1,000 training samples
|
206 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
207 |
* Approximate statistics based on the first 1000 samples:
|
208 |
| | anchor | positive | negative |
|
|
|
380 |
</details>
|
381 |
|
382 |
### Training Logs
|
383 |
+
| Epoch | Step | all-nli-eval_cosine_accuracy | all-nli-test_cosine_accuracy |
|
384 |
+
|:-----:|:----:|:----------------------------:|:----------------------------:|
|
385 |
+
| -1 | -1 | 0.6211 | 0.8116 |
|
386 |
+
|
387 |
+
|
388 |
+
### Environmental Impact
|
389 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
390 |
+
- **Energy Consumed**: 0.000 kWh
|
391 |
+
- **Carbon Emitted**: 0.000 kg of CO2
|
392 |
+
- **Hours Used**: 0.02 hours
|
393 |
+
|
394 |
+
### Training Hardware
|
395 |
+
- **On Cloud**: No
|
396 |
+
- **GPU Model**: Apple M4
|
397 |
+
- **CPU Model**: Apple M4
|
398 |
+
- **RAM Size**: 24.00 GB
|
399 |
|
400 |
### Framework Versions
|
401 |
- Python: 3.12.4
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:876e98ba961ccbb0b15e849ece50e7802b9ae9d2226f48813367d94455a9d5af
|
3 |
size 437967672
|