--- base_model: - CultriX/Qwen2.5-14B-Hyperionv4 - sometimesanotion/Lamarck-14B-v0.7 tags: - merge - mergekit - lazymergekit - CultriX/Qwen2.5-14B-Hyperionv4 - sometimesanotion/Lamarck-14B-v0.7 --- # mita-v1 mita-v1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [CultriX/Qwen2.5-14B-Hyperionv4](https://huggingface.co/CultriX/Qwen2.5-14B-Hyperionv4) * [sometimesanotion/Lamarck-14B-v0.7](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7) ## 🧩 Configuration ```yaml slices: - sources: - model: CultriX/Qwen2.5-14B-Hyperionv4 layer_range: [0, 48] - model: sometimesanotion/Lamarck-14B-v0.7 layer_range: [0, 48] merge_method: slerp base_model: CultriX/Qwen2.5-14B-Hyperionv4 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "baebee/mita-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```