File size: 4,905 Bytes
50299a6 8846a08 50299a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: other
base_model: "stabilityai/stable-diffusion-3.5-large"
tags:
- sd3
- sd3-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- standard
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'A dark-element wolf in pixel art style, featuring a sleek body in deep black with dark purple tones and subtle midnight blue accents. Sharp, angular patterns resembling tendrils of darkness adorn its fur. The wolf’s glowing yellow eyes radiate a menacing and mysterious aura, and its tail is surrounded by faint mist-like effects. Small shadowy tendrils and pixelated wisps enhance its connection to the dark element. The plain white background keeps the focus on its enigmatic and powerful design.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
---
# 0206
This is a standard PEFT LoRA derived from [stabilityai/stable-diffusion-3.5-large](https://huggingface.co/stabilityai/stable-diffusion-3.5-large).
The main validation prompt used during training was:
```
A dark-element wolf in pixel art style, featuring a sleek body in deep black with dark purple tones and subtle midnight blue accents. Sharp, angular patterns resembling tendrils of darkness adorn its fur. The wolf’s glowing yellow eyes radiate a menacing and mysterious aura, and its tail is surrounded by faint mist-like effects. Small shadowy tendrils and pixelated wisps enhance its connection to the dark element. The plain white background keeps the focus on its enigmatic and powerful design.
```
## Validation settings
- CFG: `5.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 18
- Training steps: 10000
- Learning rate: 8e-05
- Learning rate schedule: polynomial
- Warmup steps: 100
- Max grad norm: 2.0
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 5.0%
- LoRA Rank: 64
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### dataset-1024
- Repeats: 10
- Total number of images: 24
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### dataset-crop-1024
- Repeats: 10
- Total number of images: 24
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_id = 'badul13/0206'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "A dark-element wolf in pixel art style, featuring a sleek body in deep black with dark purple tones and subtle midnight blue accents. Sharp, angular patterns resembling tendrils of darkness adorn its fur. The wolf’s glowing yellow eyes radiate a menacing and mysterious aura, and its tail is surrounded by faint mist-like effects. Small shadowy tendrils and pixelated wisps enhance its connection to the dark element. The plain white background keeps the focus on its enigmatic and powerful design."
negative_prompt = 'blurry, cropped, ugly'
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=5.0,
).images[0]
image.save("output.png", format="PNG")
```
|