ayushdavid-kids commited on
Commit
5278651
·
verified ·
1 Parent(s): 1ac79fb

LUNARLANDING

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 270.35 +/- 20.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9601f84820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9601f848b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9601f84940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9601f849d0>", "_build": "<function ActorCriticPolicy._build at 0x7f9601f84a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f9601f84af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9601f84b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9601f84c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9601f84ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9601f84d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9601f84dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9601f84e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9601f13c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736930618406302943, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACaFpb2R4Rs/IGZpvVXpq75PhiC9S1jFPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF51isXBP9GMAWyUTegDjAF0lEdAoXb6aJAMUnV9lChoBkdAcetlVLi++WgHS/RoCEdAoXfWFYdQwnV9lChoBkdAYSUISDh99mgHTegDaAhHQKF+1QYUFjd1fZQoaAZHQG+9gp8WsRxoB0vZaAhHQKF/cK0D2al1fZQoaAZHQHIWriZOSGJoB0vKaAhHQKF/+7JW/8F1fZQoaAZHQHDvIoJAt4BoB0v3aAhHQKGApw71Zkl1fZQoaAZHQG4fUdBBzFNoB0vgaAhHQKGBROUMXrN1fZQoaAZHQG/Pojnmq5toB0vSaAhHQKGB0/VRUFV1fZQoaAZHQHAeMPvrnkloB0vuaAhHQKGCfR3NcGF1fZQoaAZHQGu4RwAEMb5oB0vwaAhHQKGDKPPszEd1fZQoaAZHQHGi/iLl3hZoB0vNaAhHQKGGhCJGe+V1fZQoaAZHQG8fsiKR+0BoB00IAWgIR0Chh0BZIQOGdX2UKGgGR0BwmXUwztTlaAdL2WgIR0Chh9a4lQdkdX2UKGgGR0BwmpJI1+AmaAdL4mgIR0ChiHSQo1DTdX2UKGgGR0Bxa3+R5kbxaAdL9GgIR0ChiR1LJ0W/dX2UKGgGR0BwbOwRoRI0aAdL6GgIR0ChicF4keIVdX2UKGgGR0BwBIXEZR8/aAdL22gIR0Chilk0Jng6dX2UKGgGR0BwuG1G9YfXaAdL7WgIR0Chiv9szl90dX2UKGgGR0BwAda1TisGaAdL7GgIR0Chi6bJ4jbBdX2UKGgGR0BxFP9deIEbaAdL8mgIR0Chjxe2d/aydX2UKGgGR0BwheTr3TNMaAdL7GgIR0Chj78R+SbIdX2UKGgGR0BqdTrJKaodaAdNDgNoCEdAoZIsupS75HV9lChoBkdAcN8aNMoMKGgHS+poCEdAoZL4oTfzjHV9lChoBkdAcSgHAymALGgHS/9oCEdAoZPd4mkWRHV9lChoBkdAceQpqynk1mgHS/doCEdAoZTPmig00nV9lChoBkdAcfLH9FWn0mgHS8RoCEdAoZWISJ0nxHV9lChoBkdAcZYAjY7JXGgHTQsBaAhHQKGZYGfwqiJ1fZQoaAZHQHGKMgdOqNpoB0u0aAhHQKGZ6RnvlU91fZQoaAZHQFDByYXwb2loB03oA2gIR0ChnLAZsKsudX2UKGgGR0BxBuilBQenaAdL9mgIR0ChnVpIMBp6dX2UKGgGR0Bwa0HMUypJaAdL8WgIR0Chng2/i5uqdX2UKGgGR0BxjadrftQbaAdL/mgIR0ChoZMhouf3dX2UKGgGR0Btuf6wdKdyaAdNUQFoCEdAoaKQlOXVsnV9lChoBkdAcb8FfAsTWWgHTRcBaAhHQKGjUS6lLvl1fZQoaAZHQHEnPoq0+khoB0viaAhHQKGj7FdcB2h1fZQoaAZHQGwPVFH8TBZoB02QAmgIR0ChpbvKEFnqdX2UKGgGR0ByE6FuejEfaAdL/2gIR0ChpnI2n88+dX2UKGgGR0Bxl9WjoIOZaAdNQgFoCEdAoaof8IiTuHV9lChoBkdAdFh9Zid8RmgHTUYBaAhHQKGrUScslLR1fZQoaAZHQG4gnWJ79htoB0vZaAhHQKGsC4Bmwq11fZQoaAZHQFveSxZ+x4ZoB03oA2gIR0Chr9pKjBVNdX2UKGgGR0Bu+kAeaKDTaAdNLQFoCEdAobDDQHAymHV9lChoBkdAcFSd8zAN5WgHS/5oCEdAobRHI2fkFXV9lChoBkdAcFLOxjawlmgHS/5oCEdAobT9PnB+F3V9lChoBkdAcLSvhIe5nWgHS9VoCEdAobWM7uDzy3V9lChoBkdAcOvyp71Iy2gHTQYBaAhHQKG2PZkCmuV1fZQoaAZHQHCTdIXj2jBoB0vxaAhHQKG26a7VawF1fZQoaAZHQHB8ge/5+H9oB0v1aAhHQKG3nKB/Zuh1fZQoaAZHQHGrtiUgSvloB00AAWgIR0ChuEzoMa0hdX2UKGgGR0Byr5JRO1v3aAdNAwFoCEdAobkEgSvkinV9lChoBkdAccR6GQCCBmgHS9hoCEdAobxjTUiIL3V9lChoBkdAcU7Qp4KQaWgHS+JoCEdAob0GVkc0cnV9lChoBkdAcZs5mAbyY2gHS/NoCEdAob2tKbrkbXV9lChoBkdAb/o3hGYrrmgHS/5oCEdAob5fF72L53V9lChoBkdAYUbf0mMOw2gHTRoCaAhHQKG/0UliSaF1fZQoaAZHQHBgIqXnhbZoB0vwaAhHQKHAdSrHU+d1fZQoaAZHQE/7Sncclw9oB0vqaAhHQKHBGWhysCF1fZQoaAZHQHDO3446wMZoB00CAWgIR0ChxM7cfvF4dX2UKGgGR0BwXV87ZFodaAdL7mgIR0ChxaWS+xnndX2UKGgGR0Bwrgu+RHPNaAdNDAFoCEdAocaM7GNrCXV9lChoBkdAbfg/+KjzqmgHS9BoCEdAocdhCOWBz3V9lChoBkdAbYwYSg5BC2gHS9doCEdAocgth1DBuXV9lChoBkdAcSzHGjsUqWgHTToBaAhHQKHJeFK02Lp1fZQoaAZHQHAwYRNATqVoB00AAWgIR0ChykSad+XrdX2UKGgGR0BtYh9XtBv8aAdL12gIR0Chyt/OMVDbdX2UKGgGR0Bz68bADaGpaAdL3WgIR0Chy4C7K7qZdX2UKGgGR0BxZP4Glhw3aAdNRQFoCEdAoc8sOiFj/nV9lChoBkdAcKBg8r7O3WgHS/xoCEdAoc/aDujRD3V9lChoBkdAcDZz9jwx32gHS8toCEdAodBlLeyiVXV9lChoBkdAaq1Iq9XcQGgHTSwDaAhHQKHSo9TP0I11fZQoaAZHQHEsPiLl3hZoB0vpaAhHQKHTRc+qzZ91fZQoaAZHQHCxlkhA4XJoB00CAWgIR0Ch0/32ugYhdX2UKGgGR0Bo83N9ph4MaAdNawFoCEdAodfS8lHBlHV9lChoBkdAcGz16Vt4zWgHTTcBaAhHQKHYqOby6MB1fZQoaAZHQD/MnfEXLvFoB0uRaAhHQKHZDgH/tIF1fZQoaAZHQGgjbx/d69loB01QAWgIR0Ch2fzSkTHsdX2UKGgGR0BwtQXN1QqJaAdNBQFoCEdAodq52pyZKHV9lChoBkdAcYMTnq3VkWgHS9JoCEdAodtPEdeY2XV9lChoBkdAcWrgf2bobGgHS/loCEdAodv9ENOM2nV9lChoBkdAazF/kvK2a2gHTaYBaAhHQKHgtKSPluF1fZQoaAZHQG/MjqOcUdtoB0v5aAhHQKHhrZxrBTJ1fZQoaAZHQHDJZIg/1QJoB00GAWgIR0Ch4rD2rXDndX2UKGgGR0Ba+obOu7pWaAdN6ANoCEdAoeWvfbblBHV9lChoBkdAcQ6OTJQtSWgHTQ0BaAhHQKHmdJ8v25B1fZQoaAZHQHB03WnTAnFoB0vgaAhHQKHp2LmZE2J1fZQoaAZHQHFKDzErGzdoB0v+aAhHQKHqlNDc/MZ1fZQoaAZHQHALVUyYXwdoB0vaaAhHQKHrKlQ/HHZ1fZQoaAZHQHH+fwuuiexoB0vpaAhHQKHrx0Eovzx1fZQoaAZHQG/vdCE6DGtoB00OAWgIR0Ch7IRywOe8dX2UKGgGR0Bt2BTKkl/paAdNMgFoCEdAoe1XvphWo3V9lChoBkdAb+kc6vJRwmgHTRABaAhHQKHuDv863iJ1fZQoaAZHQG48xZlnRLNoB0vzaAhHQKHuuT7l7t11fZQoaAZHQHEzFxOtW+5oB00JAWgIR0Ch8jlfqoqDdX2UKGgGR0Bwy4fr8iwCaAdL3GgIR0Ch8tWZAprldX2UKGgGR0BwaX4cm0E6aAdL0GgIR0Ch83IHcDbKdX2UKGgGR0BrR7dWQwK0aAdNAAFoCEdAofQwkAxSHnV9lChoBkdAcWicDr7fpGgHTT8BaAhHQKH1EyPdVNp1fZQoaAZHQHCYf60pmVZoB0vXaAhHQKH1ptBv73x1fZQoaAZHQG/ZlDWsijdoB00rAWgIR0Ch9nFwT/Q0dX2UKGgGR0Bxhknv2GqQaAdNCQFoCEdAofcs4Nqgy3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ab15e36572abd299fe062ec09aed5ef29d8d42d3eb5a5f85a6d52d0e74fe1d4
3
+ size 147284
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9601f84820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9601f848b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9601f84940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9601f849d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9601f84a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9601f84af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9601f84b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9601f84c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9601f84ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9601f84d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9601f84dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9601f84e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f9601f13c80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1001472,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1736930618406302943,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACaFpb2R4Rs/IGZpvVXpq75PhiC9S1jFPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0014719999999999178,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF51isXBP9GMAWyUTegDjAF0lEdAoXb6aJAMUnV9lChoBkdAcetlVLi++WgHS/RoCEdAoXfWFYdQwnV9lChoBkdAYSUISDh99mgHTegDaAhHQKF+1QYUFjd1fZQoaAZHQG+9gp8WsRxoB0vZaAhHQKF/cK0D2al1fZQoaAZHQHIWriZOSGJoB0vKaAhHQKF/+7JW/8F1fZQoaAZHQHDvIoJAt4BoB0v3aAhHQKGApw71Zkl1fZQoaAZHQG4fUdBBzFNoB0vgaAhHQKGBROUMXrN1fZQoaAZHQG/Pojnmq5toB0vSaAhHQKGB0/VRUFV1fZQoaAZHQHAeMPvrnkloB0vuaAhHQKGCfR3NcGF1fZQoaAZHQGu4RwAEMb5oB0vwaAhHQKGDKPPszEd1fZQoaAZHQHGi/iLl3hZoB0vNaAhHQKGGhCJGe+V1fZQoaAZHQG8fsiKR+0BoB00IAWgIR0Chh0BZIQOGdX2UKGgGR0BwmXUwztTlaAdL2WgIR0Chh9a4lQdkdX2UKGgGR0BwmpJI1+AmaAdL4mgIR0ChiHSQo1DTdX2UKGgGR0Bxa3+R5kbxaAdL9GgIR0ChiR1LJ0W/dX2UKGgGR0BwbOwRoRI0aAdL6GgIR0ChicF4keIVdX2UKGgGR0BwBIXEZR8/aAdL22gIR0Chilk0Jng6dX2UKGgGR0BwuG1G9YfXaAdL7WgIR0Chiv9szl90dX2UKGgGR0BwAda1TisGaAdL7GgIR0Chi6bJ4jbBdX2UKGgGR0BxFP9deIEbaAdL8mgIR0Chjxe2d/aydX2UKGgGR0BwheTr3TNMaAdL7GgIR0Chj78R+SbIdX2UKGgGR0BqdTrJKaodaAdNDgNoCEdAoZIsupS75HV9lChoBkdAcN8aNMoMKGgHS+poCEdAoZL4oTfzjHV9lChoBkdAcSgHAymALGgHS/9oCEdAoZPd4mkWRHV9lChoBkdAceQpqynk1mgHS/doCEdAoZTPmig00nV9lChoBkdAcfLH9FWn0mgHS8RoCEdAoZWISJ0nxHV9lChoBkdAcZYAjY7JXGgHTQsBaAhHQKGZYGfwqiJ1fZQoaAZHQHGKMgdOqNpoB0u0aAhHQKGZ6RnvlU91fZQoaAZHQFDByYXwb2loB03oA2gIR0ChnLAZsKsudX2UKGgGR0BxBuilBQenaAdL9mgIR0ChnVpIMBp6dX2UKGgGR0Bwa0HMUypJaAdL8WgIR0Chng2/i5uqdX2UKGgGR0BxjadrftQbaAdL/mgIR0ChoZMhouf3dX2UKGgGR0Btuf6wdKdyaAdNUQFoCEdAoaKQlOXVsnV9lChoBkdAcb8FfAsTWWgHTRcBaAhHQKGjUS6lLvl1fZQoaAZHQHEnPoq0+khoB0viaAhHQKGj7FdcB2h1fZQoaAZHQGwPVFH8TBZoB02QAmgIR0ChpbvKEFnqdX2UKGgGR0ByE6FuejEfaAdL/2gIR0ChpnI2n88+dX2UKGgGR0Bxl9WjoIOZaAdNQgFoCEdAoaof8IiTuHV9lChoBkdAdFh9Zid8RmgHTUYBaAhHQKGrUScslLR1fZQoaAZHQG4gnWJ79htoB0vZaAhHQKGsC4Bmwq11fZQoaAZHQFveSxZ+x4ZoB03oA2gIR0Chr9pKjBVNdX2UKGgGR0Bu+kAeaKDTaAdNLQFoCEdAobDDQHAymHV9lChoBkdAcFSd8zAN5WgHS/5oCEdAobRHI2fkFXV9lChoBkdAcFLOxjawlmgHS/5oCEdAobT9PnB+F3V9lChoBkdAcLSvhIe5nWgHS9VoCEdAobWM7uDzy3V9lChoBkdAcOvyp71Iy2gHTQYBaAhHQKG2PZkCmuV1fZQoaAZHQHCTdIXj2jBoB0vxaAhHQKG26a7VawF1fZQoaAZHQHB8ge/5+H9oB0v1aAhHQKG3nKB/Zuh1fZQoaAZHQHGrtiUgSvloB00AAWgIR0ChuEzoMa0hdX2UKGgGR0Byr5JRO1v3aAdNAwFoCEdAobkEgSvkinV9lChoBkdAccR6GQCCBmgHS9hoCEdAobxjTUiIL3V9lChoBkdAcU7Qp4KQaWgHS+JoCEdAob0GVkc0cnV9lChoBkdAcZs5mAbyY2gHS/NoCEdAob2tKbrkbXV9lChoBkdAb/o3hGYrrmgHS/5oCEdAob5fF72L53V9lChoBkdAYUbf0mMOw2gHTRoCaAhHQKG/0UliSaF1fZQoaAZHQHBgIqXnhbZoB0vwaAhHQKHAdSrHU+d1fZQoaAZHQE/7Sncclw9oB0vqaAhHQKHBGWhysCF1fZQoaAZHQHDO3446wMZoB00CAWgIR0ChxM7cfvF4dX2UKGgGR0BwXV87ZFodaAdL7mgIR0ChxaWS+xnndX2UKGgGR0Bwrgu+RHPNaAdNDAFoCEdAocaM7GNrCXV9lChoBkdAbfg/+KjzqmgHS9BoCEdAocdhCOWBz3V9lChoBkdAbYwYSg5BC2gHS9doCEdAocgth1DBuXV9lChoBkdAcSzHGjsUqWgHTToBaAhHQKHJeFK02Lp1fZQoaAZHQHAwYRNATqVoB00AAWgIR0ChykSad+XrdX2UKGgGR0BtYh9XtBv8aAdL12gIR0Chyt/OMVDbdX2UKGgGR0Bz68bADaGpaAdL3WgIR0Chy4C7K7qZdX2UKGgGR0BxZP4Glhw3aAdNRQFoCEdAoc8sOiFj/nV9lChoBkdAcKBg8r7O3WgHS/xoCEdAoc/aDujRD3V9lChoBkdAcDZz9jwx32gHS8toCEdAodBlLeyiVXV9lChoBkdAaq1Iq9XcQGgHTSwDaAhHQKHSo9TP0I11fZQoaAZHQHEsPiLl3hZoB0vpaAhHQKHTRc+qzZ91fZQoaAZHQHCxlkhA4XJoB00CAWgIR0Ch0/32ugYhdX2UKGgGR0Bo83N9ph4MaAdNawFoCEdAodfS8lHBlHV9lChoBkdAcGz16Vt4zWgHTTcBaAhHQKHYqOby6MB1fZQoaAZHQD/MnfEXLvFoB0uRaAhHQKHZDgH/tIF1fZQoaAZHQGgjbx/d69loB01QAWgIR0Ch2fzSkTHsdX2UKGgGR0BwtQXN1QqJaAdNBQFoCEdAodq52pyZKHV9lChoBkdAcYMTnq3VkWgHS9JoCEdAodtPEdeY2XV9lChoBkdAcWrgf2bobGgHS/loCEdAodv9ENOM2nV9lChoBkdAazF/kvK2a2gHTaYBaAhHQKHgtKSPluF1fZQoaAZHQG/MjqOcUdtoB0v5aAhHQKHhrZxrBTJ1fZQoaAZHQHDJZIg/1QJoB00GAWgIR0Ch4rD2rXDndX2UKGgGR0Ba+obOu7pWaAdN6ANoCEdAoeWvfbblBHV9lChoBkdAcQ6OTJQtSWgHTQ0BaAhHQKHmdJ8v25B1fZQoaAZHQHB03WnTAnFoB0vgaAhHQKHp2LmZE2J1fZQoaAZHQHFKDzErGzdoB0v+aAhHQKHqlNDc/MZ1fZQoaAZHQHALVUyYXwdoB0vaaAhHQKHrKlQ/HHZ1fZQoaAZHQHH+fwuuiexoB0vpaAhHQKHrx0Eovzx1fZQoaAZHQG/vdCE6DGtoB00OAWgIR0Ch7IRywOe8dX2UKGgGR0Bt2BTKkl/paAdNMgFoCEdAoe1XvphWo3V9lChoBkdAb+kc6vJRwmgHTRABaAhHQKHuDv863iJ1fZQoaAZHQG48xZlnRLNoB0vzaAhHQKHuuT7l7t11fZQoaAZHQHEzFxOtW+5oB00JAWgIR0Ch8jlfqoqDdX2UKGgGR0Bwy4fr8iwCaAdL3GgIR0Ch8tWZAprldX2UKGgGR0BwaX4cm0E6aAdL0GgIR0Ch83IHcDbKdX2UKGgGR0BrR7dWQwK0aAdNAAFoCEdAofQwkAxSHnV9lChoBkdAcWicDr7fpGgHTT8BaAhHQKH1EyPdVNp1fZQoaAZHQHCYf60pmVZoB0vXaAhHQKH1ptBv73x1fZQoaAZHQG/ZlDWsijdoB00rAWgIR0Ch9nFwT/Q0dX2UKGgGR0Bxhknv2GqQaAdNCQFoCEdAofcs4Nqgy3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4890,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea2e8813c4fcd41eed3c97cf864c19a62d0cde53e12b1499698e70232b07b229
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e517de66b079ddb3e58e9def5e08bcb8b40cb943bf0eb6de51193b4af3fcfd1f
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (185 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 270.34561610000003, "std_reward": 20.121466627026216, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-15T09:30:37.857458"}