ppo-LunarLander-v2 / config.json
austenjs's picture
Upload PPO LunarLander-v2 trained agent
f729a8c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b50ef932680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b50ef932710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b50ef9327a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b50ef932830>", "_build": "<function ActorCriticPolicy._build at 0x7b50ef9328c0>", "forward": "<function ActorCriticPolicy.forward at 0x7b50ef932950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b50ef9329e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b50ef932a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7b50ef932b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b50ef932b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b50ef932c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b50ef932cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b50f906fe00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691681156213943059, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0S2DzsecS5lVyjNk9njDF8Bw66kEHCtQAAgD8AAIA/M5cBvR89k7luj3C6M1YCtrd3crgyPYw5AACAPwAAgD9mpPq9PeATu2vM17q78BS4nLk3PGiMBzoAAIA/AACAP2amtz2PMiy6/CQdvP3VPbXOEYS7UDunNAAAgD8AAIA/5ugLPVxDU7qLKrO5omOrtFtAALl6RtM4AACAPwAAgD9mkLY8rsOGuo8pNTuaiQq17Potu6P0ULoAAIA/AACAP2avKD1IZ4O6t3Stu64LUDgJENu60md8NwAAgD8AAIA/muwZPR+NkbnAxt05UUaINBh/wbqCvAC5AACAPwAAgD8zM9g7ezKkuhI5QDpVEWC2BLVbuvWqXLkAAIA/AACAP2DlN75djo0/pDmvvXaYsL6rm2G+rg5RPQAAAAAAAAAAZom9vPY0a7p64dK6np6htXwRJboIQ/Y5AACAPwAAgD/NgmW89mx7ujnwwDs0Qyw4G487OnO2rLYAAIA/AACAPwAC5ryuhZS665LjurP/97UTCKk6t78DOgAAgD8AAIA/M8YevQ/XDbwlRjW8ae+SPH9Pdr0yw3Q9AACAPwAAgD+alR28j2IIunq9MTx+6qo2M4AfO8RsqzUAAIA/AACAP8anYr5SdYM/nVmJvXxfur4L61i+BXdiPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLdzBZZB9mMAWyUTegDjAF0lEdAkajmAXl8xHV9lChoBkdAX8Tjhky1u2gHTegDaAhHQJGrM/IKc/d1fZQoaAZHQGERYtHxz7xoB03oA2gIR0CRrapHI6sAdX2UKGgGR0BjLf4dp7C0aAdN6ANoCEdAka8BuXNTtXV9lChoBkdAYUkAZsKsuGgHTegDaAhHQJGwrlV94NZ1fZQoaAZHQGI3uEmICU5oB03oA2gIR0CRtHkXUH6edX2UKGgGR0BgjuUyHmA9aAdN6ANoCEdAkbeuj2zv7XV9lChoBkdAYjRhqj8DS2gHTegDaAhHQJG6x6Tnq3V1fZQoaAZHQFyFCZnctXhoB03oA2gIR0CRve/82rGSdX2UKGgGR0BlzRPIn0CjaAdN6ANoCEdAkcd1clgMMXV9lChoBkfANaAUg0TDfmgHS/RoCEdAkeMh1Tzd13V9lChoBkdAZC87HQyAQWgHTegDaAhHQJHkxMCcPOJ1fZQoaAZHQGPYJr1uivhoB03oA2gIR0CR5ZAUL2HtdX2UKGgGR0BjtLin5zo2aAdN6ANoCEdAke6U78vVVnV9lChoBkdATFbKs+3YtmgHS+loCEdAkfJeWOZLI3V9lChoBkdAYwyXt0FKTWgHTegDaAhHQJH1QdilSCR1fZQoaAZHQF5yG4ZuQ6poB03oA2gIR0CR9d6oVEeAdX2UKGgGR0BguAWN3np0aAdN6ANoCEdAkfZ0jHGS6nV9lChoBkdAYP8KRdQfp2gHTegDaAhHQJIAzHzYmLN1fZQoaAZHQGHwXdbgTAZoB03oA2gIR0CSAsLxqfvndX2UKGgGR0Bm4c+iaiK0aAdN6ANoCEdAkgTzmfXf7HV9lChoBkdAXSKJEYwZfmgHTegDaAhHQJIGMSlFc6h1fZQoaAZHQF5gxHXmNipoB03oA2gIR0CSB8RChN/OdX2UKGgGR0BlK2iBXjlxaAdN6ANoCEdAkgsS44Ia+HV9lChoBkdAZN3cbBGhEmgHTegDaAhHQJIOwUlAu7J1fZQoaAZHQGV1sCtA9mpoB03oA2gIR0CSFqxiobXIdX2UKGgGR8AWAjPfKp1iaAdL8mgIR0CSF5eAd4mkdX2UKGgGR0BgjmZ1FH8TaAdN6ANoCEdAkiRdPk7wKHV9lChoBkdAZWmW56MR6GgHTegDaAhHQJI1yplz2ex1fZQoaAZHQGSPyxzJZGNoB03oA2gIR0CSNl3AEdNndX2UKGgGR0BDJ5imVJL/aAdL02gIR0CSNsJ17pmmdX2UKGgGR0Bm7jMA3kxRaAdN6ANoCEdAkjxS8OCoTHV9lChoBkdAZx0IX0oSc2gHTegDaAhHQJI/5W8yvcJ1fZQoaAZHQGWTVCPZIxxoB03oA2gIR0CSQorftQbddX2UKGgGR0BmUDYkE9t/aAdN6ANoCEdAkkMfXbuc+nV9lChoBkdAYfPM8ox59mgHTegDaAhHQJJDq8UVSGd1fZQoaAZHQGGmQI+nqFBoB03oA2gIR0CSUG0r9VFQdX2UKGgGR0BlvRvm5lOHaAdN6ANoCEdAklNwswtap3V9lChoBkdAYEZeZXuE3GgHTegDaAhHQJJWxWQwK0F1fZQoaAZHQGRr6H9FWn1oB03oA2gIR0CSWKApKBd2dX2UKGgGR0Bk2QXfqHGkaAdN6ANoCEdAkl83SOR1YHV9lChoBkdAZ6MLJCBwuWgHTegDaAhHQJJiVzGPxQV1fZQoaAZHQGCPYkeIVM5oB03oA2gIR0CSaAeoDPnkdX2UKGgGR0Bf9VrylN1yaAdN6ANoCEdAknLEuDjBEnV9lChoBkdAY1pY1YQrc2gHTegDaAhHQJJzv56+nIh1fZQoaAZHQGCUtwiqyW1oB03oA2gIR0CSdEIQe3hGdX2UKGgGR0BhrJ1cMVk+aAdN6ANoCEdAkoTEgr6LwXV9lChoBkdAYJqa5PM0QGgHTegDaAhHQJKLu5AhStN1fZQoaAZHQGcE5VfeDWdoB03oA2gIR0CSkHZk078vdX2UKGgGR0BgAt7x/d6+aAdN6ANoCEdAkpP7DAJswnV9lChoBkdAZg5GlyimEWgHTegDaAhHQJKUxOARTS91fZQoaAZHQFJPT1kDp1RoB0vraAhHQJKU+QIUrTZ1fZQoaAZHQGZRVQIldC5oB03oA2gIR0CSlYCDmKZVdX2UKGgGR0BykRYV6/qPaAdNkgNoCEdAkpypcophF3V9lChoBkdAYdJYDklu32gHTegDaAhHQJKfG6+WWyF1fZQoaAZHQGSRqCHymQ9oB03oA2gIR0CSorFHJ9y+dX2UKGgGR0BkPdX1anrIaAdN6ANoCEdAkqPNTLns9nV9lChoBkdAYkDI91U2k2gHTegDaAhHQJKojasZHd51fZQoaAZHQGfMhUipvP1oB03oA2gIR0CSq0+yZ8a5dX2UKGgGR0BlZaEL6UJOaAdN6ANoCEdAkrDOvllsg3V9lChoBkdAYBIHYYixFGgHTegDaAhHQJK6nEWIoE11fZQoaAZHQGLuj3ueBhBoB03oA2gIR0CSu4H31zySdX2UKGgGR0BnThTsIE8raAdN6ANoCEdAkrxE43m3fHV9lChoBkdAYndqGDcuamgHTegDaAhHQJLXFzYEnst1fZQoaAZHQGb9OwgTyrhoB03oA2gIR0CS2i7qptJndX2UKGgGR0BopAiTt9hJaAdN6ANoCEdAktxkPH1e0HV9lChoBkdAZF9c6eXiSGgHTegDaAhHQJLc3HKfWc11fZQoaAZHQGZGAmqo60ZoB03oA2gIR0CS3P1jy4FzdX2UKGgGR0BgwqOFQEZBaAdN6ANoCEdAkt1LutwJgXV9lChoBkdAYwHWBjFyaWgHTegDaAhHQJLiiJuVHFx1fZQoaAZHQGZhcc2itaJoB03oA2gIR0CS5MELH+6zdX2UKGgGR0Bmycpqh11XaAdN6ANoCEdAkugrU9ZA6nV9lChoBkdAZ0BZIQOFxmgHTegDaAhHQJLpL/IbOu91fZQoaAZHQHD5wZbY9PloB007AmgIR0CS6hTNMXabdX2UKGgGR0BguTBoEjgRaAdN6ANoCEdAku1vuLJjlXV9lChoBkdAZtm6pYLb6GgHTegDaAhHQJLwCohpxm11fZQoaAZHQG8/HW8RL9NoB00JAmgIR0CS8P0E5hjOdX2UKGgGR0BBTndweeWfaAdL62gIR0CS9CLmp2lmdX2UKGgGR0BwQD003wTeaAdNCAJoCEdAkvRI0l7dBXV9lChoBkdAZfDfdhy8z2gHTegDaAhHQJL1OXY150N1fZQoaAZHQHGConv2GqRoB00gAWgIR0CS91NB4UvgdX2UKGgGR0BnmlfVqesgaAdN6ANoCEdAkv98ImgJ1XV9lChoBkdAZmM5myxA0WgHTegDaAhHQJMApB6a9bp1fZQoaAZHQGMQHwG4ZuRoB03oA2gIR0CTG2oAn2IwdX2UKGgGR0BnCraqS5iFaAdN6ANoCEdAkyFXsHB1tHV9lChoBkdAYXsK/Efkm2gHTegDaAhHQJMh8bEP1+R1fZQoaAZHQGjDksSTQmhoB03oA2gIR0CTIhhb4agmdX2UKGgGR0BwxT1HvttzaAdNNgNoCEdAkyLth3JPqXV9lChoBkdAZSYLFXJYDGgHTegDaAhHQJMpEk9lmOF1fZQoaAZHQHE12xY7q6hoB02gAmgIR0CTLUdbxEv1dX2UKGgGR0BklRKjBVMmaAdN6ANoCEdAky/H+ERJ3HV9lChoBkdAbZ+oBq9GqmgHTV4DaAhHQJMyt4iX6ZZ1fZQoaAZHQG4AjjzZpSJoB036AWgIR0CTNbbfxc3VdX2UKGgGR0Bgieff4yoGaAdN6ANoCEdAkzYH/YJ3PnV9lChoBkdAZZIY1pCa7WgHTegDaAhHQJM47UH6dlN1fZQoaAZHQGJC3YDklu5oB03oA2gIR0CTPr2PT5O8dX2UKGgGR0BnPCbnX/YKaAdN6ANoCEdAkz71bFCLM3V9lChoBkdAZIuLPUrkKmgHTegDaAhHQJNDnTTfBN51fZQoaAZHQGBXqy4Wk8BoB03oA2gIR0CTTv0+kgwHdX2UKGgGR0BowjRSgoPTaAdN6ANoCEdAk0/iMkyDZnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}