--- library_name: transformers license: cc-by-4.0 language: - en base_model: - Equall/Saul-7B-Base --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Ehsan Shareghi, Jiuzhou Han, Paul Burgess - **Model type:** 7B - **Language(s) (NLP):** English - **License:** CC BY 4.0 - **Finetuned from model:** Saul-7B-Base ### Model Sources - **Paper:** https://arxiv.org/pdf/2412.06272 ## Uses Here's how you can run the model: ```python # pip install git+https://github.com/huggingface/transformers.git # pip install git+https://github.com/huggingface/peft.git import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig ) from peft import PeftModel model = AutoModelForCausalLM.from_pretrained( "Equall/Saul-7B-Base", quantization_config=BitsAndBytesConfig(load_in_8bit=True), device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained("Equall/Saul-7B-Base") tokenizer.pad_token = tokenizer.eos_token model = PeftModel.from_pretrained( model, "auslawbench/Cite-SaulLM-7B", device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() fine_tuned_prompt = """ ### Instruction: {} ### Input: {} ### Response: {}""" example_input="Many of ZAR’s grounds of appeal related to fact finding. Drawing on principles set down in several other courts and tribunals, the Appeal Panel summarised the circumstances in which leave may be granted for a person to appeal from findings of fact: at [84]." model_input = fine_tuned_prompt.format("Predict the name of the case that needs to be cited in the text and explain why it should be cited.", example_input, '') inputs = tokenizer(model_input, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=256, temperature=1.0) output = tokenizer.decode(outputs[0], skip_special_tokens=True) print(output.split("### Response:")[1].strip().split('>')[0] + '>') ``` ## Citation **BibTeX:** ``` @misc{shareghi2024auslawcite, title={Methods for Legal Citation Prediction in the Age of LLMs: An Australian Law Case Study}, author={Ehsan Shareghi, Jiuzhou Han, Paul Burgess}, year={2024}, eprint={arXiv:2412.06272}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```