--- library_name: transformers language: - ro license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Tiny Ro (local) - Augustin Jianu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ro split: test args: 'config: ro, split: test' metrics: - name: Wer type: wer value: 37.48352861569144 --- # Whisper Tiny Ro (local) - Augustin Jianu This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5978 - Wer: 37.4835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.4417 | 1.7730 | 1000 | 0.5327 | 43.8513 | | 0.1813 | 3.5461 | 2000 | 0.4666 | 38.8689 | | 0.0751 | 5.3191 | 3000 | 0.4645 | 36.5006 | | 0.0326 | 7.0922 | 4000 | 0.4803 | 36.4614 | | 0.0234 | 8.8652 | 5000 | 0.5087 | 36.5148 | | 0.0082 | 10.6383 | 6000 | 0.5424 | 36.6252 | | 0.0042 | 12.4113 | 7000 | 0.5650 | 37.6509 | | 0.0029 | 14.1844 | 8000 | 0.5809 | 36.8710 | | 0.0025 | 15.9574 | 9000 | 0.5922 | 38.1495 | | 0.0021 | 17.7305 | 10000 | 0.5978 | 37.4835 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0