File size: 6,819 Bytes
d6ac98c 2948dcc 59c76a2 dc466aa 59c76a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: mit
datasets:
- audichandra/bitext_customer_support_llm_dataset_indonesian
language:
- id
---

## Quick Intro
Gajah-7B is the 1st iteration of Indonesian AI chatbot with [Merak-7B](https://huggingface.co/Ichsan2895/Merak-7B-v4) as the base model that is trained with PEFT Qlora method and Indonesian version of [bitext](https://huggingface.co/datasets/audichandra/bitext_customer_support_llm_dataset_indonesian) customer support dataset for LLM.
Gajah-7B is licensed under [MIT](https://opensource.org/license/mit) license to support the open source initiative and served as another example of how to finetune pre-trained model.
you can contact me through my [LinkedIn](www.linkedin.com/in/audichandra) or [Github](https://github.com/audichandra/Indonesian_AI_Chatbot_Customer_Support) about this model and its applications.
## Installation
We need at least Python 3.10 and PyTorch 2, and do a pip install of the requirements.txt along with some optional pip install features such as flash attention:
```bash
pip install flash-attn
```
## GPU requirements
**Training**: 8x A40
**Loading**: 1x RTX A500
*notes: the author trains and loads the model on Cloud GPU platform such as runpods*
## Scripts
**Scripts for loading model using multiple GPU**
```bash
import torch
import time
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoConfig, LlamaTokenizer, BitsAndBytesConfig
from peft import PeftModel, PeftConfig
#BNB_CONFIG = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
model_chat = "audichandra/Gajah-7B"
model1 = AutoModelForCausalLM.from_pretrained(model_chat
, torch_dtype=torch.bfloat16, device_map="auto", pad_token_id=0
, attn_implementation="flash_attention_2"
, cache_dir="/workspace"
#, quantization_config=BNB_CONFIG
)
tokenizer = LlamaTokenizer.from_pretrained(model_chat)
def generate_response(question: str) -> str:
chat = [
{"role": "system", "content": "Ada yang bisa saya bantu?"},
{"role": "user", "content": question},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True)
with torch.no_grad():
outputs = model1.generate(input_ids=inputs["input_ids"].to("cuda"),
attention_mask=inputs.attention_mask,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
max_new_tokens=512)
response = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
assistant_start = f'''{question} \n assistant\n '''
response_start = response.find(assistant_start)
return response[response_start + len(assistant_start) :].strip()
start_time = time.time()
prompt = "bagaimana saya dapat membatalkan pembelian saya?"
print(generate_response(prompt))
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Elapsed time: {elapsed_time} seconds")
```
*you can uncomment the bnbconfig to do a 4-bit quantization to run it with lower VRAM but the results might suffer in terms of quality and time*
**Scripts for loading model using single GPU**
```bash
import torch
import time
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoConfig, LlamaTokenizer, BitsAndBytesConfig
from peft import PeftModel, PeftConfig
#BNB_CONFIG = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
#model_save_path1 = "/workspace/axolotl/merged_model"
model_chat = "audichandra/Gajah-7B"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model1 = AutoModelForCausalLM.from_pretrained(model_chat
, torch_dtype=torch.bfloat16
#, device_map="auto", pad_token_id=0
#, attn_implementation="flash_attention_2"
, cache_dir="/workspace"
#, quantization_config=BNB_CONFIG
).to(device)
tokenizer = LlamaTokenizer.from_pretrained(model_chat)
def generate_response(question: str) -> str:
chat = [
{"role": "system", "content": "Ada yang bisa saya bantu?"},
{"role": "user", "content": question},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True)
inputs = inputs.to(device) # Ensure inputs are on the same device as the model
with torch.no_grad():
outputs = model1.generate(**inputs, max_new_tokens=512)
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
assistant_start = f'''{question} \n assistant\n '''
response_start = response.find(assistant_start)
return response[response_start + len(assistant_start) :].strip()
# Use the functions together
start_time = time.time()
prompt = "bagaimana saya dapat membatalkan pembelian saya?"
print(generate_response(prompt))
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Elapsed time: {elapsed_time} seconds")
```
*some features such as flash attention might not work on single GPU*
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Citation
```bash
@article{Merak,
title={Merak-7B: The LLM for Bahasa Indonesia},
author={Muhammad Ichsan},
publisher={Hugging Face}
journal={Hugging Face Repository},
year={2023}
}
@article{dettmers2023qlora,
title = {QLoRA: Efficient Finetuning of Quantized LLMs},
author = {Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
journal = {arXiv preprint arXiv:2305.14314},
year = {2023}
}
@article{axolotl,
author = {{OpenAccess AI Collective}},
title = {Axolotl: A Repository for AI Research and Development},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/OpenAccess-AI-Collective/axolotl}}
}
``` |