Delete token_position.py
Browse files- token_position.py +0 -65
token_position.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Token position definitions for MCQA task submission.
|
3 |
-
This file provides token position functions that identify key tokens in MCQA prompts.
|
4 |
-
"""
|
5 |
-
|
6 |
-
import re
|
7 |
-
from CausalAbstraction.neural.LM_units import TokenPosition, get_last_token_index
|
8 |
-
|
9 |
-
|
10 |
-
def get_token_positions(pipeline, causal_model):
|
11 |
-
"""
|
12 |
-
Get token positions for the simple MCQA task.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
pipeline: The language model pipeline with tokenizer
|
16 |
-
causal_model: The causal model for the task
|
17 |
-
|
18 |
-
Returns:
|
19 |
-
list[TokenPosition]: List of TokenPosition objects for intervention experiments
|
20 |
-
"""
|
21 |
-
def get_correct_symbol_index(input, pipeline, causal_model):
|
22 |
-
"""
|
23 |
-
Find the index of the correct answer symbol in the prompt.
|
24 |
-
|
25 |
-
Args:
|
26 |
-
input (Dict): The input dictionary to a causal model
|
27 |
-
pipeline: The tokenizer pipeline
|
28 |
-
causal_model: The causal model
|
29 |
-
|
30 |
-
Returns:
|
31 |
-
list[int]: List containing the index of the correct answer symbol token
|
32 |
-
"""
|
33 |
-
# Run the model to get the answer position
|
34 |
-
output = causal_model.run_forward(input)
|
35 |
-
pointer = output["answer_pointer"]
|
36 |
-
correct_symbol = output[f"symbol{pointer}"]
|
37 |
-
prompt = input["raw_input"]
|
38 |
-
|
39 |
-
# Find all single uppercase letters in the prompt
|
40 |
-
matches = list(re.finditer(r"\b[A-Z]\b", prompt))
|
41 |
-
|
42 |
-
# Find the match corresponding to our correct symbol
|
43 |
-
symbol_match = None
|
44 |
-
for match in matches:
|
45 |
-
if prompt[match.start():match.end()] == correct_symbol:
|
46 |
-
symbol_match = match
|
47 |
-
break
|
48 |
-
|
49 |
-
if not symbol_match:
|
50 |
-
raise ValueError(f"Could not find correct symbol {correct_symbol} in prompt: {prompt}")
|
51 |
-
|
52 |
-
# Get the substring up to the symbol match end
|
53 |
-
substring = prompt[:symbol_match.end()]
|
54 |
-
tokenized_substring = list(pipeline.load(substring)["input_ids"][0])
|
55 |
-
|
56 |
-
# The symbol token will be at the end of the substring
|
57 |
-
return [len(tokenized_substring) - 1]
|
58 |
-
|
59 |
-
# Create TokenPosition objects
|
60 |
-
token_positions = [
|
61 |
-
TokenPosition(lambda x: get_correct_symbol_index(x, pipeline, causal_model), pipeline, id="correct_symbol"),
|
62 |
-
TokenPosition(lambda x: [get_correct_symbol_index(x, pipeline, causal_model)[0]+1], pipeline, id="correct_symbol_period"),
|
63 |
-
TokenPosition(lambda x: get_last_token_index(x, pipeline), pipeline, id="last_token")
|
64 |
-
]
|
65 |
-
return token_positions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|