Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,23 +1,40 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
---
|
4 |
-
|
|
|
5 |
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
-
|
12 |
-
|
13 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
14 |
-
- llm_int8_has_fp16_weight: False
|
15 |
-
- bnb_4bit_quant_type: fp4
|
16 |
-
- bnb_4bit_use_double_quant: False
|
17 |
-
- bnb_4bit_compute_dtype: float32
|
18 |
-
- load_in_4bit: False
|
19 |
-
- load_in_8bit: True
|
20 |
-
### Framework versions
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
language: ja
|
4 |
---
|
5 |
+
Mistral-7B Japanese [LAPT + Heuristics (Untied)]
|
6 |
+
===
|
7 |
|
8 |
+
## How to use
|
9 |
+
```python
|
10 |
+
from peft import AutoPeftModelForCausalLM
|
11 |
+
from transformers import AutoTokenizer
|
12 |
|
13 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
14 |
+
"atsuki-yamaguchi/Mistral-7B-v0.1-heuristics-untied-ja"
|
15 |
+
)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
17 |
+
"atsuki-yamaguchi/Mistral-7B-v0.1-heuristics-untied-ja"
|
18 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# w/ GPU
|
21 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
22 |
+
"atsuki-yamaguchi/Mistral-7B-v0.1-heuristics-untied-ja",
|
23 |
+
device_map="auto",
|
24 |
+
load_in_8bit=True,
|
25 |
+
)
|
26 |
+
```
|
27 |
+
## Citation
|
28 |
+
```
|
29 |
+
@article{yamaguchi2024empirical,
|
30 |
+
title={An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative {LLM} Inference},
|
31 |
+
author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
|
32 |
+
journal={ArXiv},
|
33 |
+
year={2024},
|
34 |
+
volume={abs/2402.10712},
|
35 |
+
url={https://arxiv.org/abs/2402.10712}
|
36 |
+
}
|
37 |
+
```
|
38 |
|
39 |
+
## Link
|
40 |
+
For more details, please visit https://github.com/gucci-j/llm-cva
|