Ubuntu commited on
Commit
6dc829b
·
1 Parent(s): 074ec28

Modular code and removed misclassified images collection

Browse files
main.py CHANGED
@@ -5,11 +5,15 @@ from resnet_model import ResNet50
5
  from data_utils import get_train_transform, get_test_transform, get_data_loaders
6
  from train_test import train, test
7
  from utils import save_checkpoint, load_checkpoint, plot_training_curves, plot_misclassified_samples
 
8
 
9
  def main():
10
  # Initialize model, loss function, and optimizer
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
- model = ResNet50().to(device)
 
 
 
13
  criterion = nn.CrossEntropyLoss()
14
  optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
15
 
@@ -56,7 +60,9 @@ def main():
56
  plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates)
57
 
58
  # Plot misclassified samples
 
59
  plot_misclassified_samples(misclassified_images, misclassified_labels, misclassified_preds, classes=['class1', 'class2', ...]) # Replace with actual class names
 
60
 
61
  if __name__ == '__main__':
62
- main()
 
5
  from data_utils import get_train_transform, get_test_transform, get_data_loaders
6
  from train_test import train, test
7
  from utils import save_checkpoint, load_checkpoint, plot_training_curves, plot_misclassified_samples
8
+ from torchsummary import summary
9
 
10
  def main():
11
  # Initialize model, loss function, and optimizer
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+ model = ResNet50()
14
+ model = torch.nn.DataParallel(model)
15
+ model = model.to(device)
16
+ summary(model, input_size=(3, 224, 224))
17
  criterion = nn.CrossEntropyLoss()
18
  optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
19
 
 
60
  plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates)
61
 
62
  # Plot misclassified samples
63
+ '''
64
  plot_misclassified_samples(misclassified_images, misclassified_labels, misclassified_preds, classes=['class1', 'class2', ...]) # Replace with actual class names
65
+ '''
66
 
67
  if __name__ == '__main__':
68
+ main()
tmppl87qjev/_remote_module_non_scriptable.py DELETED
@@ -1,81 +0,0 @@
1
- from typing import *
2
-
3
- import torch
4
- import torch.distributed.rpc as rpc
5
- from torch import Tensor
6
- from torch._jit_internal import Future
7
- from torch.distributed.rpc import RRef
8
- from typing import Tuple # pyre-ignore: unused import
9
-
10
-
11
- module_interface_cls = None
12
-
13
-
14
- def forward_async(self, *args, **kwargs):
15
- args = (self.module_rref, self.device, self.is_device_map_set, *args)
16
- kwargs = {**kwargs}
17
- return rpc.rpc_async(
18
- self.module_rref.owner(),
19
- _remote_forward,
20
- args,
21
- kwargs,
22
- )
23
-
24
-
25
- def forward(self, *args, **kwargs):
26
- args = (self.module_rref, self.device, self.is_device_map_set, *args)
27
- kwargs = {**kwargs}
28
- ret_fut = rpc.rpc_async(
29
- self.module_rref.owner(),
30
- _remote_forward,
31
- args,
32
- kwargs,
33
- )
34
- return ret_fut.wait()
35
-
36
-
37
- _generated_methods = [
38
- forward_async,
39
- forward,
40
- ]
41
-
42
-
43
-
44
-
45
- def _remote_forward(
46
- module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
47
- module = module_rref.local_value()
48
- device = torch.device(device)
49
-
50
- if device.type != "cuda":
51
- return module.forward(*args, **kwargs)
52
-
53
- # If the module is on a cuda device,
54
- # move any CPU tensor in args or kwargs to the same cuda device.
55
- # Since torch script does not support generator expression,
56
- # have to use concatenation instead of
57
- # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
58
- args = (*args,)
59
- out_args: Tuple[()] = ()
60
- for arg in args:
61
- arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
62
- out_args = out_args + arg
63
-
64
- kwargs = {**kwargs}
65
- for k, v in kwargs.items():
66
- if isinstance(v, Tensor):
67
- kwargs[k] = kwargs[k].to(device)
68
-
69
- if is_device_map_set:
70
- return module.forward(*out_args, **kwargs)
71
-
72
- # If the device map is empty, then only CPU tensors are allowed to send over wire,
73
- # so have to move any GPU tensor to CPU in the output.
74
- # Since torch script does not support generator expression,
75
- # have to use concatenation instead of
76
- # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
77
- ret: Tuple[()] = ()
78
- for i in module.forward(*out_args, **kwargs):
79
- i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
80
- ret = ret + i
81
- return ret
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train_test.py CHANGED
@@ -31,6 +31,9 @@ def train(model, device, train_loader, optimizer, criterion, epoch, accumulation
31
 
32
  pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}')
33
 
 
 
 
34
  return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader)
35
 
36
  def test(model, device, test_loader, criterion):
@@ -56,13 +59,15 @@ def test(model, device, test_loader, criterion):
56
  correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
57
 
58
  # Collect misclassified samples
 
59
  for i in range(inputs.size(0)):
60
  if targets[i] not in predicted[i, :1]:
61
  misclassified_images.append(inputs[i].cpu())
62
  misclassified_labels.append(targets[i].cpu())
63
  misclassified_preds.append(predicted[i, :1].cpu())
 
64
 
65
  test_accuracy1 = 100. * correct1 / total
66
  test_accuracy5 = 100. * correct5 / total
67
  print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}')
68
- return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds
 
31
 
32
  pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}')
33
 
34
+ if (batch_idx + 1) % 50 == 0:
35
+ torch.cuda.empty_cache()
36
+
37
  return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader)
38
 
39
  def test(model, device, test_loader, criterion):
 
59
  correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
60
 
61
  # Collect misclassified samples
62
+ '''
63
  for i in range(inputs.size(0)):
64
  if targets[i] not in predicted[i, :1]:
65
  misclassified_images.append(inputs[i].cpu())
66
  misclassified_labels.append(targets[i].cpu())
67
  misclassified_preds.append(predicted[i, :1].cpu())
68
+ '''
69
 
70
  test_accuracy1 = 100. * correct1 / total
71
  test_accuracy5 = 100. * correct5 / total
72
  print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}')
73
+ return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds
utils.py CHANGED
@@ -9,13 +9,15 @@ def save_checkpoint(model, optimizer, epoch, loss, path):
9
  'optimizer_state_dict': optimizer.state_dict(),
10
  'loss': loss,
11
  }, path)
 
12
 
13
  def load_checkpoint(model, optimizer, path):
14
- checkpoint = torch.load(path)
15
  model.load_state_dict(checkpoint['model_state_dict'])
16
  optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
17
  epoch = checkpoint['epoch']
18
  loss = checkpoint['loss']
 
19
  return model, optimizer, epoch, loss
20
 
21
  def plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates):
@@ -62,4 +64,4 @@ def plot_misclassified_samples(misclassified_images, misclassified_labels, miscl
62
  plt.imshow(misclassified_grid.permute(1, 2, 0))
63
  plt.title("Misclassified Samples")
64
  plt.axis('off')
65
- plt.show()
 
9
  'optimizer_state_dict': optimizer.state_dict(),
10
  'loss': loss,
11
  }, path)
12
+ print(f"Checkpoint saved at epoch {epoch}")
13
 
14
  def load_checkpoint(model, optimizer, path):
15
+ checkpoint = torch.load(path, weights_only=True)
16
  model.load_state_dict(checkpoint['model_state_dict'])
17
  optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
18
  epoch = checkpoint['epoch']
19
  loss = checkpoint['loss']
20
+ print(f"Checkpoint loaded, resuming from epoch {epoch}")
21
  return model, optimizer, epoch, loss
22
 
23
  def plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates):
 
64
  plt.imshow(misclassified_grid.permute(1, 2, 0))
65
  plt.title("Misclassified Samples")
66
  plt.axis('off')
67
+ plt.show()