asutosh09 commited on
Commit
fb0d95f
·
verified ·
1 Parent(s): 5655b23

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: openai/whisper-medium.en
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: whisper-medium.en-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.95
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # whisper-medium.en-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2885
36
+ - Accuracy: 0.95
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 8
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 16
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 1.7711 | 1.0 | 112 | 1.6556 | 0.52 |
72
+ | 0.5477 | 2.0 | 225 | 0.4738 | 0.85 |
73
+ | 0.535 | 3.0 | 337 | 0.3137 | 0.92 |
74
+ | 0.231 | 4.0 | 450 | 0.3613 | 0.9 |
75
+ | 0.1923 | 5.0 | 562 | 0.2885 | 0.95 |
76
+ | 0.0584 | 6.0 | 675 | 0.6531 | 0.86 |
77
+ | 0.1783 | 7.0 | 787 | 0.5717 | 0.9 |
78
+ | 0.0022 | 8.0 | 900 | 0.4205 | 0.91 |
79
+ | 0.1032 | 9.0 | 1012 | 0.4984 | 0.91 |
80
+ | 0.0011 | 10.0 | 1125 | 0.3778 | 0.94 |
81
+ | 0.0104 | 11.0 | 1237 | 0.3709 | 0.94 |
82
+ | 0.0011 | 12.0 | 1350 | 0.4564 | 0.92 |
83
+ | 0.0009 | 13.0 | 1462 | 0.3796 | 0.94 |
84
+ | 0.0008 | 14.0 | 1575 | 0.3880 | 0.94 |
85
+ | 0.0008 | 15.0 | 1687 | 0.3930 | 0.94 |
86
+ | 0.0008 | 15.93 | 1792 | 0.3955 | 0.94 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.37.0.dev0
92
+ - Pytorch 2.1.2+cu118
93
+ - Datasets 2.15.0
94
+ - Tokenizers 0.15.0