from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch class ModelHandler: def __init__(self): self.model_path = "asritha22bce/bart-positive-tone" # Change if needed self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_path) self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) def preprocess(self, text): return self.tokenizer(text, return_tensors="pt", truncation=True, padding=True) def inference(self, inputs): with torch.no_grad(): output_ids = self.model.generate(**inputs, max_length=50) return self.tokenizer.decode(output_ids[0], skip_special_tokens=True) def postprocess(self, output): return {"positive_headline": output} handler = ModelHandler() def handle_request(text): inputs = handler.preprocess(text) output = handler.inference(inputs) return handler.postprocess(output)