Create handler.py
Browse files- handler.py +26 -0
handler.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class ModelHandler:
|
5 |
+
def __init__(self):
|
6 |
+
self.model_path = "asritha22bce/bart-positive-tone" # Change if needed
|
7 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_path)
|
8 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
9 |
+
|
10 |
+
def preprocess(self, text):
|
11 |
+
return self.tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
12 |
+
|
13 |
+
def inference(self, inputs):
|
14 |
+
with torch.no_grad():
|
15 |
+
output_ids = self.model.generate(**inputs, max_length=50)
|
16 |
+
return self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
17 |
+
|
18 |
+
def postprocess(self, output):
|
19 |
+
return {"positive_headline": output}
|
20 |
+
|
21 |
+
handler = ModelHandler()
|
22 |
+
|
23 |
+
def handle_request(text):
|
24 |
+
inputs = handler.preprocess(text)
|
25 |
+
output = handler.inference(inputs)
|
26 |
+
return handler.postprocess(output)
|